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Abstract

To obtain meaningful diagnostic measurements of hot solar plasmas requires that we must

extract the greatest amount of physical information from remotely sensed data whilst dif-

ferentiating between its information and noise content. The inference of `reliable' plasma

structure models from the data relies heavily upon the inferential `inversion' method used.

Such inversion methods allows us to infer the likely form of the underlying physical source

model from the data and theoretical estimates of the emission processes taking place. It is

widely known that such `inverse problems' can give rise to highly ambiguous (non-unique)

solutions when errors are present in the observed data. Clearly, an understanding of such

inverse approaches and the propagation of errors in data, and in the emission rates involved,

through to the �nal solution is paramount in obtaining useful diagnostic measurements. The

work presented here addresses inversion formalisms and their application in the face of typical

data and emission model uncertainties.

This thesis presents results in a �eld of study where the uncertainties associated with

remote sensing and inverse methodology can run amok if not carefully treated: the inference

of the electron density and temperature distribution of the highly inhomogeneous plasmas of

the upper solar atmosphere.

In Chapter 1 a brief description is given of the solar atmosphere and why it is best to

observe its hotter regions from space. We continue, in Chapter 2, by presenting the necessary

theoretical and numerical tools required to understand inverse problems and to make reliable

estimates of the underlying plasma structure using such inverse techniques.

Chapter 3 digresses from the main theme to introduce an important data analysis tool

which is used extensively in the later chapters of this thesis; the Genetic Algorithm (GA). The

exibility of the GA method is clearly demonstrated therein. As an example we discuss the

Gaussian �tting GA (Ga-GA) and its application to the decomposition of real and synthetic

emission line spectra.
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In Chapter 4 we discuss the ill-posed inference of plasma diagnostic distributions from

emission line intensities and ratios. These distributions are widely known as the Di�erential

Emission Measure functions, or DEMs for short. In Section 4.1 we demonstrate that there is

a formal relationship between the `spectroscopic mean values' of ne, Te obtained using line

ratios and their respective DEM functions �(Te) and �(ne) with an extension to �(ne; Te) (the

general bivarate DEM function) where mean values of ne and Te are simultaneously de�ned.

Following this, in Section 4.2, we develop an entirely novel GA based technique (the Ratio

Inversion Technique; RIT), by which we are able to ascertain these diagnostic distributions

to a higher degree of uniqueness than methods used previously. In particular, the RIT proves

to be quite insensitive to the theoretical uncertainties in the atomic emission models used;

which posed a major diÆculty in the intensity inversions of previous authors.

In Chapter 5 we present another GA based method (SELECTOR) to overcome the serious

numerical instability of inferred DEM functions when noise is present in the observed emis-

sion line intensities. We show that the impact of this data noise on the poorly conditioned

DEM inversions is dramatically reduced by isolating a subset of emission lines (in the wave-

length range of the CDS and SUMER instruments of the ESA/NASA SOlar and Heliospheric

Observatory - SOHO - satellite) that improve the conditioning of the DEM inverse problems.

Chapter 6 draws together the points raised and conclusions reached in the preceding

chapters and briey discusses possible improvements, extensions and future applications of

the methods introduced.

This study is considered to be both valuable and timely given the increased usage of inverse

diagnostics from the high quality data acquired by instruments onboard the aforementioned

SOHO satellite.
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Chapter 1

Introduction

This Chapter

This chapter concentrates on the foundations and development of solar UV/EUV emission

line spectroscopy. Indeed, through basic models of the solar atmosphere and discussion of the

properties of the Earth's atmosphere we discuss the need for remote sensing the hot solar and

astrophysical plasmas from space. Some of the �rst pieces of work detailing the remote sensing

of such astrophysical plasmas, derivation of the electron density of planetary nebulae by Menzel

et al. (1941) and the `detection' of the seemingly erroneous temperature of the solar corona by

Edl�en (1943), show that the basic spectroscopic techniques employed today have remained rela-

tively unchanged. However, the great ux of data from the ESA/NASA Solar and Heliospheric

Observatory (SOHO) mission, now entering its third year of operation, a thorough quantita-

tive study of the reliable inference of plasma characteristics and of related theoretical plasma

modelling is timely.

In this chapter we introduce some of the particulars of the solar atmosphere and express

our motivation for spending vast amounts of time, money and e�ort in attempting to un-

derstand the mysteries it presents us with. The atoms and ions that constitute the Sun's

atmosphere emit (and absorb) electromagnetic (e-m) radiation; it is our understanding the

basic physical mechanisms that generate this radiation that provide us with clues to under-

standing of the underlying processes we observe. There is a problem here though, the Earth's

atmosphere doesn't make this `remote sensing'1 easy. The wavelengths of radiation from hot-

ter regions of the solar atmosphere that are particularly important to understand are almost

completely absorbed before reaching ground-based observing sites. This means that we must

1In brief, remote sensing is the indirect measurement of the properties of distant and awkward objects.
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1.1. THE OUTER SOLAR ATMOSPHERE

observe the Sun from the inhospitable reaches of space invariably using unmanned drones.

Here we introduce the basic facts about the atmosphere of the Sun, and discuss the need for

it to be observed from outwith our protective atmosphere. We briey discuss some of the

landmarks of space-borne solar observing from the use of World War II rocket technology

through to the major mission of today, the joint ESA/NASA mission called the SOlar and

Heliospheric Observatory or just SOHO2. Section 1.3 gives a short overview of the scope and

the motivation behind the material that will appear in the following chapters.

1.1 The outer solar atmosphere

The Sun is the sentinel of our region of the Galaxy and it provides us with the energy we

need to survive and maintain the state of equilibrium we call life. We are being constantly

bombarded by radiation (and particles) emitted by the Sun and the key to understanding

the processes happening on the Sun is in `catching' some of this radiation. To understand

the physical mechanisms behind the structure of the Sun's atmosphere is to understand the

Sun itself. The radiation emitted (or absorbed) by it tells us of its temperature/density

structure, chemical composition, velocity and many other important physical quantities. We

will discuss the probing of the Sun's atmosphere3 in due course but we must �rst give its

physical description.

The goal of this thesis is not in the discussion of particular solar features, i.e. those

prominent in all images of the Sun, but of the diagnostic methods employed by the solar

physics community to study them. We will consider the atmosphere of the Sun as, to make the

discussion simple, a plane-parallel model generated by data from Vernazza et al. (1981) and

use it to introduce some solar terminology, see �gure 1.1 (noting that we are using a universal

reference point as the zero in solar altitude, the point where the vertical optical depth, � , of

the atmosphere at a wavelength of 5000 �A is unity). At low heights (i.e. below 600 kilometers),

Te(z) shows a monotonic decrease as z increases. This region is called the photosphere and is

where the bulk of the optical (and therefore the bulk of all) radiation is emitted. Higher still

in the atmosphere (between 600 and 2,000 kilometers) the temperature gradient changes sign

to produce a region with near constant temperature (4; 500 � Te � 10; 000 K) this region,

called the chromosphere, which sees a decrease with height in the electron (and gas) density

2Another commonly used acronym is SoHO, but we will use SOHO hereafter.
3We use here a working de�nition for atmosphere, it is \those regions where radiation can escape freely

into the surrounding medium".
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1.1. THE OUTER SOLAR ATMOSPHERE

Figure 1.1: Average temperature (solid line) and density (dashed line) structure of the quiet

solar photosphere, chromosphere, transition region (TR) and corona. From the photosphere

(z = 0) to a temperature of 4:5� 105 K the values plotted are given in Vernazza et al. (1981)

and into the corona from a quiet \network" model given in Mariska (1992).

by several orders of magnitude. Yet higher in the atmosphere (above 2,500 kilometers in

our model) we enter a region called the corona which has an average temperature around

1; 000; 000 K. The region between chromosphere and corona is a complex beast, imaginatively

named the transition region and is the subject of an excellent monograph by Mariska (1992).

Indeed, there are other monographs dedicated to speci�c solar regimes, the photosphere

(much of which is discussed in Steno 1994), chromosphere (Thomas & Athay 1961; Bray

et al. 1984), corona (Golub & Pasacho� 1997) and some magni�cent books covering most

solar topics and phenomena (Sturrock 1985; Zirin 1988; Stix 1989; Foukal 1990).

By now, even in this very simple description, alarm bells should be ringing because the

second law of thermodynamics states that heat cannot (by thermal processes) ow from cooler

material to hotter material. So, what mechanism heats the chromosphere and corona and

what produces the \discontinuous" jump in temperature of the transition region ? These are

a couple of the big puzzles of solar physics.

To continue our argument we must digress a little. As noted above, the photosphere
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produces the bulk of the optical \white" light but the corona was only (until the advent

of space observations) visible4 briey during solar eclipses. Such eclipse observations of the

corona (for visible wavelengths) were of the coronal \green" (5303 �A) and \red" (6374 �A)

lines and it took many years to �nally assess what was creating these strong emission lines5.

Eminent authors at the time suggested that they were signatures formed by a new element

called \coronium", but Mendeleev was near completion of the periodic table of elements and

there was no space left for coronium, so something else had to explain these emission lines.

Eventually, through the work on the spectra of highly ionised atoms of Edl�en (1941) who,

using the new models of atomic structure postulated by Grotrian (1928), identi�ed the \red"

line as belonging to nine times ionised Iron (Fe X). The follow up work (Edl�en 1943) revealed

that the corona was about one hundred times hotter than the photosphere.

This early work provided a clue to understanding the solar spectrum of emitted e-m radi-

ation because it allowed the identi�cation of speci�c lines with those belonging to particular

atomic spectra observed in the laboratory plasmas of the time. However, these studies were

restricted to optical wavelengths and to study fully the parts of the solar spectrum produced

by hotter regions would require observations beyond the violet end of the optical spectrum

(with the additional bene�t of not being inuenced by the intense photospheric radiation in

that range). As we will see below, from ground based observatories, it is virtually impossible

to make such observations because our atmosphere doesn't transmit radiation of wavelengths

belonging to most emission lines formed in the transition region and corona (mostly in the

ultraviolet, UV, or EUV, the extreme-UV and X-Rays; see Table 1.1) readily and we are

required to take special steps to overcome this diÆculty.

From pictures like those shown in �gure 1.4 we can clearly observe the presence and in-

uence of magnetic structures pervading the solar atmosphere. The vast number of possible

morphological and topological magnetic �elds generated by sub-photospheric dynamic con-

vection mean that a course in solar zoology (or philately) is required to keep track of the

newest \breeds". Possibly the most obvious determination to make by eye is the di�erence

between the \quiet" and \active" Sun. Quiet Sun regions are simply identi�ed by the fact

that there appears to be very few or no complex magnetic structures present whereas ac-

4Visible - in the sense of naked eye observation.
5We now know that the bulk of coronal emission comes from the so-called \K-corona" (arising from electron

scattering of photospheric light) whereas the portion attributed to the red and green lines is known as the

\L-corona".
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tive regions are usually associated with the most well known of solar features, sunspots and

loop-like structures.

There are many other solar phenomena, both static and highly dynamic, associated with

the interaction between the plasma and the magnetic �elds present. To give a complete list of

these, or at least those presently identi�ed, would be inappropriate in this discussion but here

are some of the most commonly observed: ares, surges, jets, polar plumes, prominences and

coronal mass ejections (CMEs). Further discussion of these features is beyond the scope of this

thesis, the interested reader is directed to the excellent texts mentioned above. The majority

of the work we will present in due course will be most reliably applicable to steady quiet

regions although modi�cations can (in some cases) be made to incorporate the timescales

and dynamics of active regions.

1.2 Remote sensing of the Sun (1945 ! Present)

We have mentioned above, in passing, that one of the major reasons why we have to place

observing instruments above the Earth's atmosphere to study that of the Sun and of other

more distant objects. There are three principal reasons why we should want to observed the

Sun from space :

1. Extending the range of wavelengths observable. The hotter regions of the solar atmosphere

emit in the far ultraviolet and X-ray spectral bands but our atmosphere is e�ectively

Table 1.1: The photon wavelength and energies of the electromagnetic spectrum.

Name Wavelength range (� �A) Energy range (E eV)

Radio � 107 �A E � 0.00124 eV

Infrared (IR) 106 > � � 7500 �A 1:65 � E > 0:00124 eV

Visible 7500 > � � 3000 �A 4:13 � E > 1:65 eV

Ultraviolet (UV) 3000 > � � 1500 �A 8:24 � E > 4:13 eV

Extreme-UV (EUV) 1500 > � � 100 �A 124 � E > 8:24 eV

Soft X-Ray (SXR) 100 > � � 1 �A 12:4 � E > 0:124 keV

Hard X-Ray (HXR) 1 > � � 0:025 �A 500 � E > 12:4 keV

Gamma Ray 0:025 > � �A E > 500 keV
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1.2. REMOTE SENSING OF THE SUN (1945 ! PRESENT)

opaque to that range of wavelengths. The only e-m radiation from the Sun that reaches

Earth's surface is in the visible, a few \windows" in the near infrared, extremely high

energy gamma rays and a wide range of radio wavelengths. Figure 1.2 shows the height

of unit optical depth of the Earth's atmosphere as a function of wavelength.

2. Reduction of scattering and distortion. At visible wavelengths the corona is very faint

compared to the extremely bright solar disc. Again, our atmosphere scatters light (cf.

the blue appearance of the daytime sky is caused by the Rayleigh scattering of solar

white light) and puts fundamental limits on distinguishing faint objects near bright ones.

The distortion of light passing through the turbulent regions of our atmosphere (e.g. the

troposphere) is another prime concern, but can be accommodated for by implementing

complex adaptive optics schemes (see, e.g., Lloyd-Hart et al. 1998).

3. Continuous observations. For many long duration events such as monitoring oscillations

of the photosphere and stochastic events like ares continuous observation is required just

because of their particular physical nature. We can obtain continuous observations of the

Sun in two ways :

? placing a satellite in a Sun-synchronous orbit (a low Earth orbit running from pole to

pole but in a slowly precessing plane which remains perpendicular to the Earth-Sun

line).

? placing a satellite into orbit at the Earth-Sun Lagrange point (along the Earth-Sun

line at the point where the opposing gravitational attractions of the Sun and Earth

cancel).

However, long before we had the advanced technology of today and were able to place an

array of Sun observing satellites in orbit there were many successful attempts at remotely

sensing the solar atmosphere. During World War II (WWII) solar physics was essentially a

classi�ed subject and the research was for military application. However, soon after the close

of hostilities, UV observations of the Sun were made using a spectrograph own on a slightly

modi�ed versions of Werner Von Braun's infamous V-2 rockets. The capture of several V-2

rockets, the repatriation of various engineers and technicians, and the resulting technological

advances of the late 1940's allowed the Sun to be studied regularly in the UV and X-Ray

wavelength bands. These observations were made using `sounding rockets'6 which are still

6`Sounding' comes from a nautical term for taking a measurement by dropping a line into the sea.
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1.2. REMOTE SENSING OF THE SUN (1945 ! PRESENT)

Figure 1.2: Plot showing the height of unit optical depth of the Earth's atmosphere as a func-

tion of wavelength. Clearly visible are the wavelength ranges where the Earth's atmosphere

is e�ectively opaque (taken from Golub & Pasacho� 1997).
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frequently used to supplement and calibrate observation made by Earth orbiting satellites.

In the late 1950s, virtually as soon as the �rst earth orbiting satellites were being suc-

cessfully launched, the theoretical development of space-borne observations took great leaps

with instrumentation placed on the Sputnik series. Soon after the turn of the decade (1962)

NASA launched the �rst of the Orbiting Solar Observatories (OSOs) which spearheaded their

research objectives until the middle of the 1970s with the launch of OSO-8. The OSOs were

designed to cover the UV and extreme-UV regions and also showed up a aw in observations

made by earlier orbiting satellites; the e�ect of background radiation from electrons in the

Earth's Van Allen radiation belts caused severe contamination of the measurements. In the

mean time NASA had developed, built and placed in orbit (using materials from the Apollo

moon programme), the Skylab space station which was operational for a period of 251 days

from May 1973 until its eventual re-entry in July 1979.

Skylab saw the introduction of imaging technology that had higher spectral and spatial

resolution than any of its predecessors. The hub of the Skylab observations was the Apollo

Telescope Mount (ATM), the home for eight full size instruments that covered the entire

spectral region from 2 �A to 7000 �A. The Skylab mission, because of increased observation

time and scienti�c funding levels, was the most productive mission of solar observations from

space. The advances of the mission are documented in the proceedings of three workshops

(Zirker 1977; Sturrock 1980; Orrall 1981) on the evolution and structure of \coronal holes",

active regions and the analysis, observation and predictions of solar ares.

In the years following its demise the quantity of high quality Skylab data kept solar

physicists busy, that is until the mid to late 1980s with the launch of several new missions (e.g.,

Hinotori and the Compton Gamma Ray Observatory) but in particular the NASA/NASDA

YohKoh (\sunbeam" in Japanese) in 1991. YohKoh is a joint mission that is investigating the

solar corona and its X-Ray emission. Its principal aim was to obtain data of unprecedented

quality on the emissions from active regions and ares up to and through the last solar

maximum in 1992. YohKoh is still \going strong" and providing vast quantities of information

rich data for the community as the solar activity cycle is on the rise again.

This brings us up to date, as far as solar observing missions are concerned, apart from

the mission for which this thesis is intended as a theoretical aid to compliment and enhance

the physical understanding of the observations made. The mission to which we refer is the

ESA/NASA \cornerstone 2000" satellite called the Solar and Heliospheric Observatory, or

SOHO for short.
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1.2.1 The Solar and Heliospheric Observatory (1995 ! Present)

The Solar and Heliospheric Observatory (SOHO) was launched into orbit from Cape Canaveral

at 8:08 UT on December 2nd 1995. It was placed in a halo orbit around the L1 Earth-Sun

Lagrange point some 1.6 million kilometers from Earth and it took nearly four months to

get there. Figure 1.3 shows a schematic layout of the SOHO spacecraft which contains the

largest compliment of solar observation tools since Skylab was constructed some twenty years

previously.

SOHO's prime scienti�c goals are laid out in detail in Fleck et al. (1995) and these include

understanding :

? the structure, composition and dynamics in the solar interior (the region below �5000 = 1,

i.e. below the photosphere)

? the structure and dynamics of the chromosphere, transition region and corona

? the solar wind and its interaction with the Earth's atmosphere

The second of these objectives is our principal concern; diagnosis and interpretation of the

emission of the outer regions of the solar atmosphere. Images such as those in �gure 1.4

show the di�erent features visible in observations at di�erent wavelengths that are taken

almost simultaneously. Table 1.2 gives some details of the instruments used for this study

and certain other attributes. From this set of telescopes and spectrometers we obtain plasma

diagnostics which provide us with temperature, density and velocity measurements of the

emitting material. In particular though, we discuss the theoretical development for data

acquired by the Coronal Diagnostic Spectrometer (CDS; Harrison et al. 1995) and the Solar

Ultraviolet Measurement of Emitted Radiation (SUMER; Wilhelm et al. 1995) instruments.

1.3 The structure of this thesis in brief

We have seen that probing the outer atmosphere of the Sun requires a great deal of planning

and accurate execution to place intricate pieces of unmanned machinery over a million kilo-

meters into space. Our discussion so far has raised one very important question, how do we

explain the heating of the chromosphere and corona in particular ?

We will not attempt to answer this question but we hope to achieve the next best thing

with this thesis. That is, we will endeavour to enhance the understanding, methodology

9
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Table 1.2: Brief details of the spectroscopic instruments on SOHO for remotely sensing the

solar atmosphere. Note that NIS and GIS are the Normal Incidence and Grazing Incidence

Spectrometers that constitute CDS.

Acronym/Investigation Wavelength Range (�A)

SUMER 1st Order 390-805 �A

Solar UV Measurement of Emitted Radiation 2nd Order 780-1610 �A

CDS NIS 308-381, 513-633 �A

Coronal Diagnostic Spectrometer GIS 151-221, 256-338, 393-493, 656-785 �A

EIT 4 �lters 171 �A (Fe X/IX), 195 �A (Fe XII),

Extreme UV Imaging Telescope 284 �A (Fe XV), 304 �A (He II)

UVCS 3 channels 1145-1287 �A (Ly-�), �1032 �A (O VI),

UV Coronagraph Spectrometer 4500-6000 �A (White Light Channel; WLC)

Figure 1.3: Schematic of the SOHO satellite and its payload of scienti�c instruments. Some

details of the spectroscopic instruments can be found in Table 1.2 (taken from Fleck et al.

1995).
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Figure 1.4: Images taken by the Extreme-ultraviolet Imaging Telescope (EIT) on June 24th

1998 detailing some of the solar structures seen in quiet and active regions of the Sun. Each

image is taken in one of EIT's four bandpasses each of which images the EUV emission of

lines formed at di�erent temperatures and hence solar altitudes (see, e.g., �gure 1.1). These

images cover temperatures from around 50,000 K (He II) in the transition region to 2.5 million

K (Fe XV) in the corona. Interestingly the upper right image appears out of focus, indeed

this image appears to be the last taken by EIT at 23:19 on the date above before the satellite

was temporarily lost.
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and implementation employed when seeking diagnostic quantities from the observed solar

UV/EUV spectra. Only once these can be obtained with a high degree of uniqueness can we

proceed to infer the likely form of physical processes occuring in the emitting plasma.

We have already mentioned the ground-breaking work of Edl�en (1941) during WWII that

was rapidly followed by the work of Menzel et al. (1941) who made use of these theoreti-

cal advances to make estimates of the electron densities and physical structure of planetary

nebulae from emission line ratios. Today, much of the analysis presented on plasma diagnos-

tics follows roughly the same theme however the work of Je�eries et al. (1972a, b) gave it

a slightly di�erent slant. They re-cast what was essentially the work of Pottasch (1964) for

obtaining electron density and temperature distributions, Di�erential Emission Measures or

DEMs, into an \inverse problem". Stated basically, this means that the underlying plasma

\source" (DEM) is convolved through the atomic mechanisms to produce the observed emis-

sion spectrum and the object of the problem is that; given the observed spectrum and the

theoretical atomic models (both known) what is the nature and structure of the source (un-

known) ? They set out to formulate this problem, but o�ered no formal solution. Advances

in the formulation and understanding of the nature of this inverse problem were made by

Craig & Brown (1976), Almleaky et al. (1989) and Brown et al. (1991) and we will meet these

in due course, but the most recent publication (treating the most general case of density and

temperature distributions) of Judge et al. (1997) has shed light and posed serious questions

about the limitations of reliably recovering \useful" diagnostics. Their paper, titled \Funda-

mental limitations of emission-line spectra as diagnostics of plasma temperature and density

structure", considers in detail, the e�ect on the inversion of uncertainties in the (hitherto

assumed known) atomic calculations. Much of the work presented in this thesis is motivated

by the points raised by Judge et al. (1997) and we show that novel methods can be employed

to minimise some of the diÆculties they encountered.

In the following chapter we introduce the necessary terminology and methodology to

understand and obtain solutions to inverse problems (Section 2.1) and to construct relevant

atomic models and discuss possible sources of uncertainty therein (Section 2.2).

Chapter 3 digresses a from the main theme and ow to introduce a valuable diagnostic

tool (used extensively in the following chapters) called a Genetic Algorithm (GA; Goldberg

1989). In particular, we concentrate on the application of GAs to the decomposition of

emission line spectra. The method discussed therein is applied to several synthetic spectra

and a UV line emission spectrum taken by the aforementioned SUMER instrument. We
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show that these GA based decompositions are stable to data noise and to the e�ects inherent

to poorly sampled spectra, especially at the limits of instrumental resolution. The material

contained in Chapter 3 was published as McIntosh et al. (1998b).

Chapter 4 sees a return to the main theme of this thesis, the inference of reliable plasma

diagnostics from emission line spectra in the wavelength range of the SOHO CDS/SUMER

instruments. We, in Section 4.1, approach this from two di�erent perspectives, the line

ratio and the DEM methods, however we show that both are mathematically equivalent

(Section 4.1 was published as McIntosh et al. 1998a). We will show that the line ratio

method is an adequate means of overcoming the theoretical uncertainties discussed in Judge

et al. (1997) and that formal inversion to obtain the aforementioned DEMs is the only way, in

the context of inverse methods (including those related methods using line ratios), to extract

useful information from emission line spectra (Craig & Brown 1976). To this end, we (in

Section 4.2) present a novel GA based approach, the Ratio Inversion Technique (RIT), to

`couple' the two methods mentioned above and obtain the most reliable possible DEMs in

the presence of these theoretical uncertainties. We show that the RIT exploits the systematic

nature of these uncertainties and obtains DEMs to a higher degree of uniqueness than a

standard DEM inversion in their presence. Section 4.4 sees the application of the RIT to

emission line spectra obtained by the Solar EUV Rocket Telescope and Spectrograph (SERTS-

-89; Thomas & Neupert 1994) to see the di�erences occurring between DEMs obtained by

RIT inversion and those published previously (Brickhouse et al. 1995; Landi & Landini 1997;

Lanzafame et al. 1998).

In Chapter 5 we employ another GA based method (SELECTOR) to overcome another

serious problem associated to the solution of any inverse problem, in this case we focus on the

univariate (Te and ne) DEM inverse problems. This discussion concerns the ampli�cation of

errors in the observed emission line intensities to catastrophic errors in the recovered DEMs

through the linear dependence (amongst other things) of the inverse operator, or kernel,

which is then known as being poorly conditioned (see Craig & Brown 1986). The method we

present searches a list of 133 emission lines (again in the CDS/SUMER wavelength range) to

identify the subset of those lines that reduces the error ampli�cation by obtaining the kernel

with the best possible conditioning.

Chapter 6 discusses the points raised and methods presented in the preceding chapters

as well suggesting possible applications, improvements and future extensions. In all we show

that careful consideration of the physical nature of the emission lines used as well as careful
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selection can yield results that are numerically stable and o�er a greater degree of uniqueness

than those obtained using a standard approach.
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Chapter 2

An introduction to inverse

problems and plasma diagnostics

This Chapter

In this chapter we discuss the essential theoretical and analytic methods employed in the fol-

lowing chapters of this thesis. We concentrate upon the formulation and numerical solution of

inverse problems, presenting various practical `tools' en route. Further, we discuss the theo-

retical foundations of obtaining reliable diagnostics of hot solar plasmas and likely sources of

uncertainty therein.

2.1 Inverse Problems

Inverse problems occur in a wide variety of physical contexts. They are a natural consequence

of any situation in which an observer makes an indirect measurement of the quantities which

he or she is actually interested in. Indeed, the designation `inverse' arises from the fact that

many objects of interest are manifestly obscured from observation, either by their physical

location (such as the solar corona), or their intrinsic non-measurability (e.g., the sub-surface

velocity of volcanic magma, cannot be measured directly since any measuring probe would

likely be destroyed by the enormous stresses and temperature). This situation essentially

de�nes \remote-sensing" sciences such as astronomy where the observed quantities are ob-

tained from the electromagnetic radiation emitted by atoms, ions and electrons interacting

under external forces. Very often the source is not resolved spatially, so only the volume

integrated particle/photon ux from the object can be measured. Theoretical considerations
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must then provide a relationship between the sets of observables (often of secondary interest)

and non-observables (unknowns) of primary interest. These are often related in a non-trivial

way (i.e. they are coupled). Obviously, without theoretical modelling of such coupled systems

it would be impossible to learn anything at all about such physical sources. In many cases

this coupling, or convolution, gives rise to the well known (even if not well understood) dif-

�culties with solving inverse problems : namely ill-posedness and poor conditioning. Indeed,

such diÆculties manifest themselves by creating non-uniqueness and instability respectively

of the solution, even from small perturbations in the observed quantities.

To be mathematically concise, inverse problems are a special class of functional equations

encompassing all classes of integral, di�erential and matrix equations. In this thesis we will

only consider inverse problems relating to the solution (which will be, more often than not,

numerical) of integral equations; often requiring speci�c mathematical techniques to achieve

a numerically stable solution, i.e. counteracting the diÆculties mentioned above. In general,

when attempting to �nd a stable solution to an inverse problem we will make use of some

prior physical knowledge or assumptions about the nature of the problem. Before we consider

a speci�c example of an inverse problem in solar physics we extract a little of the preface

to Craig & Brown (1986) as a very apt description of inverse problems in an astronomical

context

\The remote observer �nds himself in a situation, akin to that of a spectator at a

magic show, where he is presented with a limited set of more or less remarkable data

emanating from a source, the nature of which he is fascinated to discover but which

he is not permitted to handle directly. In the magic show, the basic mechanism of

the trick known only to the magician, is convoluted through the unrevealed process

of his presentation, before appearing in strongly modi�ed form to the spectator. In

astronomy, the unknown basic physics of the observed source is convoluted through the

source structure and emission processes (also unknown) before arriving at the observer's

instrument."

A physical example of such a process lies in the photon spectrum of a solar are. The observed

photon spectrum can be regarded as a convoluted representation of the electron spectrum.

To obtain the energy distribution of electrons in the are, we use physical information (and

assumptions) about electron collision processes (cross-sections, etc) and the electron distri-

bution to cast the form of the convolution operator and to stabilise the inversion respectively.
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Such information allows us to \step back" from the observed photon spectrum to the inferred

electron spectrum. This a priori information provides a means of obtaining the most `reli-

able' solution when the operators present are such as to make the inferred solution extremely

sensitive to errors in the observed quantities or are very nearly singular (i.e. a linear operator

S is singular precisely when it has no corresponding inverse operator S�1).

This section provides the necessary mathematical framework needed to solve inverse prob-

lems numerically. There are many mathematical and numerical techniques to help obtain a

stable solution of inverse problems. We seek the ones which will help us to \make the most

of what we have got", i.e. obtain as much information about the physical source from the

limited amount of available observed data. Section 2.1.1 details the two di�erent classes of in-

tegral equations and how they can be cast as matrix equations whereas Section 2.1.2 describes

the e�ects of ill-posedness and poor conditioning of inverse problems mentioned earlier. Nu-

merical solution techniques are described in Section 2.1.3, particularly the methods known

as Singular Value Decomposition (SVD), Quadratic Regularisation (QR) and Maximum En-

tropy (ME). These algorithms and techniques take great advantage, as we shall see, of the

relationship between linear inverse problems and linear systems of equations (discussed at

greater length in Craig & Brown (1986) and references therein) thus making analysis relatively

straightforward for such a mathematical abstraction.

2.1.1 Mathematical de�nitions

In order to formulate a mathematical description of an inverse problem one must establish

a relationship between the observable quantities y of a particular problem, and the set of

non-observables, x. In general y and x are symbols that describe a number of pieces of

information. If we consider only the case where the number of observable quantities and

unknowns are �nite, we can write y � fyi; i = 1; : : : ; ng and x � fxj; j = 1; : : : ;mg for

some positive integers n and m. However, it is possible that the observables or the unknowns

(or both) are values of functions of a continuous (real) variable so that there is an in�nite

number of pieces of information (conceptually, functions of a continuous variable may be

considered as `vectors' in an in�nite dimensional vector space). In practice, the observables

are the remotely sensed data of the problem. For example, the emission line intensities

in the Di�erential Emission Measure problem of later chapters, or the measured frequency

splittings in Helioseismology di�erential rotation inverse problems (see, e.g., Hansen 1994)

and the unknowns are the potentially continuous \source" functions.
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Any relationship derived from a mathematical model of a physical process can be written,

without loss of generality, as the relationship between y and x

G (y) = K (x) ; (2.1)

where G and K represent some known functions of the observables and non-observables,

respectively. The term `function' is used in its broader mathematical sense : K and G

are mappings from the (vector or function) spaces containing the aforementioned quantities.

Equality in equation (2.1) forces G (y) and K (x) to have the same number of degrees of

freedom and to form a system of equations, whilst its classi�cation as an inverse problem

depends entirely on the properties of K and holds when K is a non-trivial function of the

non-observable x (i.e. the system of equations is coupled as previously noted).

Although equation (2.1) is general in nature it can be used to categorise inverse problems.

Consider the following speci�c examples :

1. Suppose y and x are vectors, of dimension m and n, respectively (m data values and n

unknown parameters to �nd). Then G (y), and therefore K (x), is a vector, of length q,

say. Equation (2.1) becomes, in terms of vector components,

Gi(y) = Ki(x); for i = 1; : : : ; q: (2.2)

If G and K are both linear functions, then equation (2.1) may be written, using matrix

notation as, Gy = Kx, where G and K are q�m and q�n matrices, respectively. Indeed

for q = m and G = Im (where Im is the identity matrix of dimension m) equation (2.1)

becomes a pure matrix-type inverse problem of the form, y =Mx.

2. Now we suppose that y is a vector as before, but x is a function (x = x(t)) of some real

variable t (u � t � v). For simplicity we assume that K a linear function of x so that,

if G (y) is a function of s (again a real variable with a � s � b), equation (2.1) becomes

(noting that when x represents the values of a function of a continuous variable, t in this

case, K involves an integral over that variable)

G(y; s) =

Z v

u
k(s; t)x(t)dt; for a � s � b: (2.3)

This is the general form of a Fredholm integral equation (see Craig & Brown 1986) and is

also discussed at greater length in Section 2.1.1.1.

A more appropriate treatment of G as the data of the problem is to consider the replace-

ment of G(y), in equation (2.1), with the symbol g, so that we study problems that take the
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form

g = K(x): (2.4)

On inspection of equations (2.2) and (2.3), we see how the integral equation is directly

analogous to the linear matrix system of equation (2.4) when K is a linear functional, as

before. Indeed, many of the properties discussed in this, and other chapters depend on

standard linear matrix operations. These su�er from various \defects". One principal defect

in many of the linear matrix adaptations of inverse problems is that of singularity. In terms

of matrices, singularity is a familiar phenomenon. Consider the solution of a square matrix

equation y = Ax (for vectors x and y and square matrix A) which is obviously x = A�1y

provided that A�1 exists. This is precisely when it has no linear dependence in its rows thus

it has non-zero determinant and is classed as non-singular. However, when treating matrices

derived from integral operators (cf. K above) singularity is dependent on its eigenvalues with

the degree of singularity given by the number of zero1 eigenvalues and again the number of

zero eigenvalues directly indicates the degree of linear dependence in the kernel operator.

The concept of singularity is discussed further in Section 2.1.3.2.

2.1.1.1 Fredholm integral equations

By far the most general class of integral equation is the Fredholm integral equation (cf.

equation (2.3)). Note that

Z b

a
k(x; y)f(x)dx = g(y) c � y � d and (2.5)

f(y) + �

Z b

a
k(x; y)f(x)dx = g(y) c � y � d (2.6)

are Fredholm integral equations of the �rst and second kind respectively.

The analytical solution to equation (2.5) (and equation (2.6)) is the continuous function

f(x). However in the `real world' there are only a �nite number of observables available, and

not the in�nite number required for the exact recovery of f(x) from either equation if we

neglect, for the moment at least, ill-posedness and poor conditioning. Thus, we must solve

the integral equation over a discrete set of values. To discretise the integral equation we use

linear quadrature methods (cf. the Trapezoidal rule or Simpson's method discussed in Press

et al. 1992) to `break up' the integrand and integrate it over a shorter range than a to b

1In this sense, \zero" can be interpreted as numerically zero, at the precision of the computer used.
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forming an n element data vector g with each element g(yi) given by

g(yi) = gi =
nX
j=1

Z xj

xj�1

k(x; yi)f(x)dx ; (2.7)

provided that x1 = a and xn = b. If then we assume that the `mesh' size (i.e. jb�aj
n ) is �ne

enough for f(x) to be constant `enough' over that interval to be approximated by its value

at the midpoint, then we have

gi =

0@ nX
j=1

Z xj

xj�1

k(x; yi)dx

1A f(xj) : (2.8)

Equation (2.8) is analogous to the equation of a vector element gi given by

gi =
nX
j=1

Kij fj ; (2.9)

where we have equated
R xj
xj�1

k(x; yi) dx and f(xj) with the matrix element Kij and vector

element fj respectively. So, to generalise, for all data elements g we have the matrix equation

g = K f ; (2.10)

and the solution of Fredholm integral equations of the �rst type reduces to solving linear

matrix equations like those mentioned immediately above.

When the physical model requires that the source function is the solution of a Fredholm

equation of the second kind (see, e.g., equation (2.6)) the integral form discretises to a form

similar to the classical eigenvalue problem

g = (I � �K) f ; (2.11)

where I is the identity matrix of dimension n� n. However solution of the discrete form of

equation (2.6) is not trivial (Bertero 1997) and since such a treatment is outwith the scope

of this work will be considered no further.

To digress a little at this point, a Singular Value Decomposition (SVD; see Section 4.3.2 of

Craig & Brown 1986) of the matrix K in equation (2.10) can yield very important properties

of the inverse problem as well as allowing the extension of inverse methodology from square to

non-square matrix equations. Given that K is a m�n matrix (m; n integers not necessarily

the same), on performing the SVD we obtain

K = U � V T ; (2.12)

where the matrices U (m�n), V (n�m) and � (m�m) are orthogonal. The columns of U ,

and V are the singular vectors u, and v, respectively and � is a diagonal matrix containing
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the singular values (�1; : : : ; �n). In short, the singular vectors of K are the non-zero vectors

satisfying both

K vi = �i ui and (2.13)

KT ui = �i vi (2.14)

with K KT ui = �2i ui and KT K vi = �2i vi also holding such that the vectors ui and vi

are the eigenvectors of symmetric matrices K KT and KT K respectively with corresponding

eigenvalue �2i . These left (ui) and right (vi) singular vectors form orthonormal bases for

K, i.e. the orthogonal matrices U and V in equation (2.12). This relationship allows us to

diagnose how poorly conditioned the inverse problem is, as discussed in the next section.

2.1.1.2 An example of a Fredholm equation : The Di�erential Emission Measure

problem

This thesis contains a detailed discussion of one particular inverse problem that takes the

form of a Fredholm equation of the �rst kind. The aim of this thesis is to `reliably' infer the

solar plasma source distribution in terms of a Di�erential Emission Measure (DEM) function

from remotely sensed line intensities from Ultraviolet (UV) and extreme-Ultraviolet (EUV)

emission line spectra (see Section 2.2.1.1). From equation (2.73) we see that the integrated

line intensity of an emission line, with identi�er i, as a function of electron temperature (Te)

is

Ii =

Z
Te

Ki(Te)�(Te) dTe ; (2.15)

where Ki(Te) is the emissivity of the line and �(Te) is the temperature DEM function.

To perform the inversion, and infer �(Te), we have to observe a set of n (n > 1) emission

lines so that equation (2.15) takes on the matrix form of equation (2:10) by using each Ii and

Ki(Te) as the i
th element of g and row of K respectively. The resulting kernel matrices are

highly singular but we leave discussion of their singularity to Chapter 5. The DEM inverse

problem is a very real case of an ill-posed inverse problem; it is common to see di�erent authors

using the same data, but producing very di�erent inferred emitting plasma structures, see,

e.g., Section 4.4 and Kashyap & Drake (1998).

2.1.1.3 Volterra integral equations

The class of integral equations known as Volterra equations may be regarded as a special

case, or sub-class, of Fredholm equations when the kernels exhibit a \cut-o�" or when the
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variable appears in the limits of the integral. The di�erence between the formulation of the

two arises because we retain the constant a but have made b some function of x (b = b(x))

in equations (2.5) and (2.6), so we haveZ b(x)

a
k(x; y)f(x)dx = g(y) : (2.16)

In fact, Volterra equations (of the �rst kind) may be treated similarly to equation (2.5) with

k(x; y) = 0 for y > x, this `truncation' gives them a quite distinct nature. The associated

kernel matrix of the discretised form is lower-triangular2 and the linear system has a recursive

nature easily amenable to the Gaussian Elimination or back-substitution methods discussed

in Sneddon (1972). The solution to many inverse problems in the physical sciences reduce to

the solution of such equations, e.g. see the following example.

2.1.1.4 An example of a Volterra equation : Non-thermal bremsstrahlung spec-

tra

As mentioned above, if we wish to infer the average3 source electron energy spectrum, F (E),

of a beam or are it can only be done from the properties of the radiation such as the observed

bremsstrahlung spatially integrated photon spectrum, J(�), of the source. As described in

Brown (1971) (and Craig & Brown 1986) we have the form

J(�) = �npV

Z 1

�
QB(�; E) �F (E) dE (2.17)

where �np = 1
V

R
V np(r)dV and �F (E) = 1

�np

R
V F (E; r)np(r)dV , V is the source volume and

np is the proton density and QB(�; E) is the electron-ion (non-relativistic) Bethe-Heitler

bremsstrahlung cross-section (see Brown 1971, 1978).

Equation (2.17) is of Volterra type as can be more clearly observed by changing variable

from E to y = 1=E and x = 1=�

g(x) =

Z x

0

f(y)dy

(x� y)1=2
(2.18)

where f(y) = y�2 �F (1=y) and g(x) = x�1=2G(J(1=x)). This problem, which is moderately

ill-posed, has been widely researched (see, e.g., Brown et al. 1998) and gives rise to electron

energy spectra which are unstable to noise in g(x), and in more general cases non-unique

(depending on the physical characteristics of the model atmosphere used, i.e. full or partial

ionisation).

2All kernels of Volterra equations can be expressed as Heaviside functions in K.

3Average in the sense that F (E; r) it is a function of three spatial coordinates.
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2.1.2 The ill-posed inverse problem

By far the biggest source of anxiety when attempting to �nd the solution of an inverse

problem is of a philosophical nature. Consider the scientist who, on testing a new hypothesis,

calculates (using the new theoretical model) a set of synthetic `observed' quantities. From

these the scientists hopes to reconstruct the generating source function precisely. The scientist

typically discovers that from his one data set many (some physically unsuitable) source

functions may appropriately \�t the bill" (see, e.g., �gure 2.1). Such failure is common and

seemingly unnoticed in many areas of the physical sciences, but is often easily cured by proper

consideration of the solution space and prior restrictions on the properties on the solution.

Here are just three of the things to be considered when solving an inverse problem of any

kind :

1. The ill-posedness of the integral equation itself, i.e. the non-uniqueness of the recovered

solution. This depends critically on the integral operator (kernel) of the problem.

2. The amount by which errors in the data or observed quantities become ampli�ed in the

recovered solution is due to the conditioning of the kernel matrix. A very poorly condi-

tioned kernel can lead to incredibly unphysical solutions and also to a multiplication of

physical ones - all are `acceptable' in the sense of �tting noisy data.

3. Indeed, the solution may, for noisy data, lie in an undesirable sub-space of the solution

space, e.g. the recovered solution is negative at some point yet we used a strictly positive

source model to construct the test data. Hence, it is usually essential to impose a priori

constraints, such as smoothness, to our solution in order that it \makes sense".

All of these factors are discussed in the following text with enough detail to give the reader

a grasp of the diÆculties involved in solving ill-posed inverse problems.

In any vector or function space it is important to have an estimate of the magnitude

of a quantity (e.g. jvj on the real line). Indeed, there are many fundamental properties

of inverse problems that can only be described by knowledge of the metric or norm of the

function or vector space they inhabit. The magnitude measure of an element of a particular

space is called its norm, and if the spaces S and D are those containing the solution and data

respectively, their norms are correspondingly denoted as k:kS and k:kD. As we will see, norms

are vital to making estimates of error ampli�cation in the solution of integral equations and

inverse problems alike.
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Figure 2.1: An example (taken from Craig & Brown 1986 pg., 47) showing that, in a function

space, data functions gi that are close (kgi � gjkD < " where " is small) to the exact data

function can produce, through the inverse mapping f3 = K�1 g3, unphysical solutions that

are arbitrarily far from the true solution.
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As a temporary digression and for future reference, it is useful here to de�ne the general

properties of norms (or metrics) on vector spaces : A norm k:kV on a vector space V is any

function f (f : V 7! R, the space of real numbers) that satis�es the following three properties

1. kxk � 0, and kxk = 0 if and only if x � 0

2. k�xk = j�j kxk for any real number �

3. kx+ yk � kxk+ kyk

for any vectors x and y in the space V. Consider also the norm of a matrix Mm�n in the

space M of real m� n matrices given by kMki where i is the order of the norm. The most

commonly used norms are the Euclidean distance or 2-norm

kMk2 = �max ; (2.19)

where �max is the maximum singular value of K de�ned previously (see also Section 2.1.3.2).

Similarly, the 1-norm or the `In�nity' metric as it is also known, is given by

kMk1 = fmax
i

nX
j=1

jMij jg (2.20)

and is the sum of the elements in the maximum row of M .

As stated above, the essence of an ill-posed problem is the instability introduced in the

recovered solution; consider the Fredholm integral equation of the �rst kind given by

Z 1

0
k(x; y) f(x) dx = g(y) ; (2.21)

which has the regularised (see Section 2.1.3.1) solution vector, f̂ , discretised over a �xed mesh.

Naively, the problem appears to be completely solved, but seldom is this the case. The cause

of the non-uniqueness in the solution is that functions in the operator null-space are being

linearly superimposed onto the actual solution. In the notation of the previous section we

have the situation that, for any non-zero vector x in S there exist, in the data space D,

vectors g(y) = K(x) that satisfy kg(y)kD = 0. In terms of equation (2.21) we have functions

f0(x) that satisfy Z 1

0
k(x; y) f0(x) dx = 0 : (2.22)

These null-space functions (f0(x)) can take any physical form that satis�es equation (2.22)

and can be added arbitrarily to f̂ without a�ecting the data. Generally however they con-

tribute a degree of ambiguity over the exact physical nature of the solution. So we have, from
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the linearity of the integralZ 1

0
k(x; y) (f(x) + f0(x)) dx = g(y) + 0 = g(y) : (2.23)

The properties of the kernel function, k(x; y), as mentioned earlier determine the condi-

tioning of the problem once it is discretised to a matrix form like equation (2.10). A poorly

conditioned kernel matrix has strong linear dependence in its rows and, in the worst case

scenario, its determinant will tend towards 0 as the number of dependent rows increases,

hence K will be singular (i.e. without an inverse). Equation (2.10) of Section 2.1.1.1 tells

us that, provided the matrix K�1 exists, we formally have the exact solution f = K�1g to

the Fredholm equation (of the �rst kind). However in many physical applications the matrix

is very nearly singular and the inverse problem is considered to be poorly conditioned. The

conditioning of a kernel operator (or matrix) is, as mentioned earlier, critical in monitoring

error propagation from the observed data (g) through to the recovered solution (f).

In assessing the conditioning of the discretised inverse problem we anticipate a (vector)

noise level (Æg) in our data measurements. We will observe error magni�cation in the solution

(Æf ) of the order

K Æf = Æg : (2.24)

From this, implicitly using the 2-norm, we see that

kÆgk2 � kKk2 kÆfk2 (2.25)

and we have reach a situation where we have, using the solution to equation (2.10), if the

matrix K�1 exists (i.e. f = K�1 g)

kfk2 � kK�1k2 kgk2 : (2.26)

Combining equations (2.25) and (2.26) we can see, on inspection, how errors in the data

propagate through to the recovered solution

kÆfk2
kfk2

� kKk2 kK
�1k2

kÆgk2
kgk2

: (2.27)

Thus, we de�ne the condition number of the kernel matrix, CK , (1 < CK <1) which can be

expressed as CK = kKk2 kK�1k2 =
�max

�min
. The second equality arises since the singular values

of K�1 are just the reciprocal singular values of K, and shows that the spread of the singular

values of K can disclose many hidden numerical problems, again see Chapter 5. Since the

condition number controls the stability of the solution, consider the case when kÆgk = 2%
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then even a relatively well conditioned kernel with CK = 50 will give rise to errors kÆfk up to

100%. What is clear from the relationship above is the damaging e�ect of zero (or near-zero;

as discussed above) singular values, or eigenvalues, because these will dramatically increase

CK and have, in general, highly oscillatory (often unphysical) eigenfunction counterparts (see

the example on pg. 9 of Craig & Brown 1986 and discussions in Sections 2.1.3.2 and 2.1.3.1).

It is not only random errors in the data g that can cause serious numerical instability but

also truncation and discretisation errors. Also, in certain cases K is not exactly known (i.e.

it has its own associated error measure), so provided that we take g+ Æg = (K+ ÆK)(f + Æf)

it is clear that errors in both K (ÆK) and g (Æg) we have

kÆfk2
kfk2

�

 
CK

1� C 0
K

!
kÆgk2
kgk2

+

 
C 0
K

1� C 0
K

!
(2.28)

where we have de�ned C 0
K = �0max

�min
and �0max is the maximum singular value of the ÆK matrix.

Clearly this inequality requires that 0 � C 0
K < 1. Notice that in the case of ÆK = 0 (C 0

K � 0)

this inequality reduces to that of equation (2.27). The study of inverse problems with kernel

errors has been treated in only a limited number of cases (e.g., Goncharskii et al. 1972; Petrov

& Khovanskii 1973) and even then only for very small errors ÆK.

This section has discussed some more of the components necessary to understand the

ill-posed inverse problems presented in this thesis. The next section covers the application of

such understanding to obtain unique numerically stable solutions.

2.1.3 Numerical solution of inverse problems: regularisation

The following sections discuss the use of a priori information to obtain a `reliable' solution

where reliable, in this sense, means numerically stable. We describe and demonstrate three

of the most popular numerical techniques for solving inverse problems: Tichonov Quadratic

Regularisation (QR), truncated Singular Value Decomposition (SVD) and the Maximum En-

tropy (ME) techniques. In Section 2.1.4 we will use all three formalisms to demonstrate their

e�ectiveness in solving an inverse problem (one amenable to analytical solution) discussed in

Rust & Burrus (1972).

We have already seen (from equations (2.10) and (2.11)) that the solution of an inverse

problem (from a Fredholm integral equation) can be reduced to solving a `simple' matrix

equation. However, in Section 2.1.2 we discovered how the ill-posedness of inverse problems

and the poor conditioning of the kernel matrix can wreak havoc if not considered carefully.

Indeed, the fact that we `know', or have theorised, how the solution will `look' (e.g. many
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S

N

N
Null Space

First order solutions

Solution space

Second order solutions

Figure 2.2: The hypothetical representation of the solution space S and the domains in which

various types of characteristic solution belong. In particular we identify the null-space N and

the domains of solutions with continuous �rst and second order derivatives that satisfy some

criterion (see, e.g., equation(2.29)). The use of a priori information about the functional

nature of the solution e�ectively constrains the solution to lie in one of these domains of S.

physical situations require a positive and/or monotonic solution) means we can apply some

a priori `knowledge' (e.g. smoothness) to extract a particular `unique' solution from the

possibly in�nite number of solutions in the unconstrained case (see, e.g., �gure 2.2). As

an example consider again the DEM function of Section 2.1.1.2 where positivity would seem

like an appropriate constraint to apply to the solution (we do not want regions of the solar

atmosphere having a imaginary electron density, n2e < 0). In the language of the previous

section, this only makes available the area of the solution space where kf(x)k > 0 for all x.

For completeness, and accuracy, the discretised integral equation Kf = g should be

written asK f̂ = ĝ where f̂ (f+Æf ) and ĝ (g+Æg) are actual realisations of f and g. Classically,

it is considered that a `solution' (belonging to the solution space S) satis�es kK f̂ � gkD �

kÆgkD, for metric k:kD in the data space D. However, since kf � f̂kS may be arbitrarily

large we must introduce a regularisation (or trade-o�) constraint to eliminate the very large

28



2.1. INVERSE PROBLEMS

number of high frequency solutions known to originate from small data perturbations without

reducing the `freedom' of the solution too much. This is a direct consequence of the Riemann-

Lebesgue lemma - see, e.g., Sneddon (1972)Z b

a
k(x; y) am f

cos(my)

sin(my)
gdy ! 0 as m!1

which holds for any bounded square integrable (
R R

jk(x; y)j2dxdy � M) kernel. This shows

that any Fourier amplitude am present in f(y) is smoothed out by the action of the kernel,

i.e. am may be smoothed out in the data, but its high frequency Fourier component is still

present in the solution.

As may be guessed from the previous paragraph much of the methodology for solving

inverse problems revolves around `standard' least-squares minimisation procedures, i.e. we

seek to reconstruct the observables (ĝ) by `suggesting' forms of the unknown (f̂) using as

much a priori information as possible about the solution. So the method of Lagrange gives

(minimising with respect to f̂)

min
f̂

kg �K f̂k2 + �k�(f̂)k2 (2.29)

where the functional �(f̂) depends on the features we wish f̂ to exhibit a priori. Equa-

tion (2.29) introduces the constant �, the Lagrange multiplier or trade-o� parameter, which

adjudicates a delicate compromise between `good' recovery and domination by a priori in-

formation (e.g. see �gure 2.3, Jin & Hou 1997 and others). The following subsections show

how the regularised inversion process is carried out, at least in principle4.

2.1.3.1 Quadratic regularisation

In most cases of practical interest, the solution f = K�1 g of equation (2.10) is numerically

unstable if the solution is not regularised. In an attempt to justify this statement we must

construct a maximum likelihood, or least squares, solution of equation (2.10), i.e. we consider

solving

min
f̂

MX
i=1

24gi � NX
j=1

Kij f̂j

352 (2.30)

where f̂ is now our estimate of the actual solution, f . Di�erentiating this with respect to the

kth component, f̂k, we obtain

MX
i=1

Kik

0@gi � NX
j=1

Kij f̂j

1A = 0 (2.31)

4Chapter 8 of Craig & Brown (1986) provides a useful recipe for how one should approach the inversion of

remotely sensed data.
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Figure 2.3: A typical plot of recovered accuracy (jg�K f̂ jS) against the smoothing parameter,

�. Clearly, the increase of the smoothing parameter does not improve the least-squares �t to

the data. The point where the two balance is the point on the curve (C) nearest to the origin

(min
C
jC � 0j) is extrapolated to yield the ideal choice of �.

which can also be re-written in matrix formulation as

f̂ =
�
KT K

��1
KTg (2.32)

provided that
�
KT K

��1
exists. The fact that we must smooth f̂ arises because, in the

process of inverting the matrix KT K, small eigenvalues (singular values) can cause small

variations in the data set to be magni�ed dramatically in the recovered solution, leading to

the highly unstable and unphysical solutions.

Regularisation requires that the a priori information used to complete the de�nition of

the inverse problem is a smoothness condition on the source function. So from the statement

of equation (2.29) above, we obtain a smooth solution by bounding an appropriate linear

functional, say Hf̂ , subject to the classical constraint that kK f̂ � gk is minimised. So we are

reduced to solving, again using the 2� norm implicitly

kK f̂ � gk2 + kHf̂k = min (2.33)

where � is the regularisation (or smoothing) parameter (cf. the Lagrange multiplier of above).

The inverse problem literature details the various forms of Hf̂ : Tichonov (1963), whose

name is synonymous with the method of regularisation, suggested a zeroth order approach
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whereH = I, the identity operator, whereas Phillips (1962) used a second order regularisation

method. In other words he sought solutions that can `�t the data' (kK f̂ � gk2 � kÆgk2) but

were `suÆciently smooth' (to eliminate highly oscillatory components) which minimise

kHf̂k22 = kf̂
00

k22 =
Z b

a
[f̂

00

(y)]2 dy (2.34)

where f̂
00
(x) indicates double di�erentiation with respect to x. We will therefore restrict

our study to �rst and second order discretised Quadratic Regularisation (QR) functions

(�(f̂) = Hf̂) respectively, which take the form

�1(f̂) =
MX
j=1

�
f̂j+1 � f̂j

�2
and (2.35)

�2(f̂) =
MX
j=1

�
f̂j+1 � 2f̂j + f̂j�1

�2
: (2.36)

Equations (2.35) and (2.36) are forward di�erence estimates (see, e.g., Chapter 12 of Beyer

1991) of the �rst and second derivatives of f̂ and their respective operators H determine the

region of the solution space in which f̂ can lie (see, e.g., �gure 2.2).

Since our treatment focuses on the similarity between solution of inverse problems and

the corresponding singular linear systems of equations, we cast equation (2.33) as a matrix

system for H2, the second order regularising functional of equation (2.36). So, performing

an analysis similar to the one prior to equation (2.32), di�erentiating equation (2.33) with

respect to f̂k, we obtain the regularised matrix solution

KT ĝ =
�
KT K + �H

�
f̂ ; (2.37)

where H is the smoothing matrix

H =

0BBBBBBBBBBBBBBBBBBB@

1 �2 1

�2 5 �4 1

. . .

0 : : : 0 1 �4 6 �4 1 0 : : : 0

. . .

1 �4 5 �2

1 �2 1

1CCCCCCCCCCCCCCCCCCCA
and an estimate of � is customarily taken to balance the bracketed term (i.e. � � tr(KT K)

tr(H)

where tr(M) is the trace of the matrix M), or by obtaining a plot similar to �gure 2.3.
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We can also obtain the solution to equation (2.37) iteratively, using a method implemented

by Tichonov (1963). So, if we substitute for K (in equation (2.10)) its approximate inverse

(Tichonov 1963 and Louis 1996) K 0 = KT K + �H, then we are seeking to minimise the

modulus of step-wise di�erence vector over i = 1; : : : ; N (N is typically a large number)

ri = g �Kxi (2.38)

where xi is the solution at step i and is given by

xi = xi�1 +K 0 KT ri�1 : (2.39)

So, to help understand the regularisation process we look symbolically at equation (2.37) and

use the Tichonov formalism. Therefore, by setting H = In where In is the identity matrix of

order n in equation (2.37) we have

f̂ =
KTg

(KT K + �I)
: (2.40)

On expanding for f̂ in terms of the eigenvectors of KT K (the singular vectors vj from above),

we have

f̂ =
1X
j=0

 
�j

�2j + �
gj

!
vj : (2.41)

From this relationship it is clear that small eigenvalues (�2j < �) are `replaced' by � in the

calculation and their oscillatory counterparts are seen to be `�ltered out' since the bracketed

term is � 1.

In short we can view the regularisation process for solution space, S, and the regularised

solution f̂ as actively

1. restricting f̂ to lie in a region of S only available to smooth functions of a particular nature,

traditionally a polynomial of low order n or to a low order singular function expansion

(see below).

2. Minimising the dimension of the null-space of the problem by removing the dependence

on near-zero eigenvalues which in turn will,

3. �lter out the high frequency components in f̂ .

2.1.3.2 Singular Value Decomposition

When we have to consider systems of equations with singular, or numerically close to singular,

matrices we have a very powerful ally in Singular Value Decomposition (SVD). This form
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of decomposition can always be performed irrespective of how singular the matrix is, and is

almost unique (Craig & Brown 1986). The SVD technique is used extensively, and has been

essentially been optimised in the �eld of Helioseismology (see, e.g., Christensen-Dalsgaard

et al. 1993, Schou et al. 1994, Hansen 1994 and Basu et al. 1997).

From Section 2.1.2, we have seen that any matrix, M , can be decomposed into a multi-

plication of two orthogonal matrices (U and V ) and the diagonal matrix (�) which contains

the singular values of M . Again, the SVD of M is

M = U � V T ; (2.42)

and that of M�1 is given by

M�1 = V ��1 UT = V [diag(
1

�1
; : : : ;

1

�n
)] UT (2.43)

where we remember that U UT = V T V = I and for a diagonal matrix the elements of its

inverse assume their reciprocal values.

As justi�cation of the above statement on uniqueness consider the discretised inverse

problem of equation (2.10) which will possess a null-space (as described above). The non-

uniqueness of the solution will depend critically on the number of zero (or zero to within

numerical accuracy) singular values, with each one adding an extra dimension to the null-

space (i.e. each contributing another linearly independent vector fo satisfying K fo = 0), the

dimension of the null-space is termed the nullity5 of K. Although this sounds complicated,

consider that the solution space has dimension N (the dimension of f) and the rank of K

(the dimension of the sub-space of g which is reached by the mapping of f by K) are simply

related by the rank and nullity theorem which states that \rank plus nullity equals N".

It is simple to develop an expression for the solution of equation (2.10), f̂ , in terms of the

singular values, �i, and singular functions ui ;vi of the kernel matrixK from the relationships

above. In any SVD reconstruction we have to truncate the singular values at some minimum

`cut-o�' value which roughly corresponds to the choice of � above. Typically this cut-o� is

chosen to reduce the e�ect of small (numerically very small or just small with respect to the

noise level) or zero singular values. So we choose the cut-o� for p where �p+1 is less than

the larger of the precision of the computer performing the calculation, or the data noise level

(Æg). We then obtain the expression for fp, given by

fp =
pX

j=1

gj
�j

vj (2.44)

5indeed, if K is non-singular, we can assume that since the nullity is zero our solution is unique
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or by direct analogy to equation (2.41)

f̂ =
NX
j=0

 
�j

�2j + �
gj

!
vj : (2.45)

where we have replaced the need to truncate with a trade-o� parameter, �.

Although the solution returned may be a composite of in�nitely many of these null-space

functions, we must \choose" carefully the value of �, or where we want to truncate our

solution, using any a priori constraints we have decided to impose on the problem at hand.

These a priori constraints only allow us to select an `unique' solution.

2.1.3.3 Maximum Entropy

Maximum Entropy is one of the most commonly used techniques for stabilizing the solution

of inverse problems. The approach is similar to that of Quadratic Regularisation, i.e. we seek

the solution f̂ that minimises

min
f̂

MX
i=1

24gi � NX
j=1

Kij f̂j

352 + ��(f̂) (2.46)

where the smoothing functional now takes the non-linear form

�(f̂) =
NX
i=1

f̂i �mi � f̂i log(
f̂i
mi

) (2.47)

and mi is some `prior estimate' of f̂ towards which the function will be smoothed, commonly

assumed to be at (Twomey 1963). The a priori information used in a typical Maximum

Entropy recovery is that each element of the solution is independent of any other element

and so the `smoothing' is applied to the solution in a global manner.

Although there are many analogies to Quadratic Regularisation when considering a Max-

imum Entropy technique, one advantage of using Maximum Entropy is that it allows an

additional a priori constraint to be implied automatically, viz. ME will impose positivity.

We have seen previously that positivity is very useful in many physical situations. Further

analysis of the Maximum Entropy technique is beyond the scope of this discussion, because

of the non-linearity of the smoothing operator. The ME algorithm used in the calculations

of the example below and future chapters (unless otherwise stated) simply implements the

GUIPS6 package of routines.

6GUIPS is the acronym given to the Glasgow University Inverse Problem Software, a collection of routines

to �nd solutions to ill-posed inverse problems. The routines were written by Dr. A. M. Thompson
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2.1.4 A fully worked example

As an aid in the understanding of the discussion above, we will discuss the solution of a

speci�c inverse problem. As an ideal test we will consider the solution of the Fredholm

equation presented in Rust & Burrus (1972) (�rst discussed by Phillips 1962), the reason

being that this is amenable to an analytical solution.

The inverse problem, stated speci�cally is

y(t) =

Z 6

�6
k(s; t) x(s) ds ; (2.48)

where the kernel function k(s; t) (jtj � 6) is given by

k(s; t) =

8><>: 1 + cos
�
�(s�t)

3

�
for js� tj � 6

0 for js� tj > 3
(2.49)

and the data function7

y(t) =

8><>: (6� jtj)
h
1 + 1

2 cos
�
�t
3

�i
+ 9

2� sin
�
�t
3

�
for jtj � 6

0 for jtj > 6
: (2.50)

Thus, to complete equation (2.48) we require the exact solution function x(s) which is

x(s) =

8><>: 1 + cos
��s
3

�
for jsj � 6

0 for jsj > 3
: (2.51)

In order to test the GUIPS (and SVD) inversion techniques discussed above we must discretise

the integrand of equation (2.48) into a matrix form (cf. equation (2.10)). To do this we

invoke Simspon's extended quadrature rule (i.e. multiplying the rows of the kernel matrix by

integration weights). The form of the kernel matrix can be observed at the top of �gure 2.4

with its corresponding singular value spread below. We observe from the ratio of maximum to

minimum singular values �max

�min
that the kernel matrix of the problem has a condition number

of 42886:66. We would hence expect a certain amount of oscillation in the solution with an

adequate recovery of the form of the solution function given that the data input given to the

inversion techniques is randomly perturbed (about the y(t) value) by �15%. Indeed, this

is observed in �gure 2.5 where we have plotted the analytic solution (equation (2.51)) with

those obtained by the various methods outlined above.

7The version of y(t) printed in the original manuscript has the 9
2�

factor multiplying the wrong term in

the equation, this is the amended version.
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Figure 2.4: The surface representation of the kernel matrix (top) of equation (2.49) and the

distribution in size of its singular values (bottom).
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Figure 2.5: Results of the various inversion techniques (details in the �gure legend) discussed

in this chapter operating on the analytical inverse problem presented in Rust & Burrus

(1972). Subtle di�erences are visible for each version of the solution and these di�erence are

characteristics of those particular routines.
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2.2 Atomic Physics

The principle aim of solar spectroscopy is to determine the characteristics of, and conditions

within, the emitting plasma volume. However to understand the momentum and energy

balance of the plasma we must determine the physical properties of the plasma from the data

(e.g. the chemical abundance of the elements, the density, temperature, velocities and size of

the emitting features). This requires adequate knowledge of the spectral formation process

(i.e. we need a model to calculate the kernels discussed above). It is therefore necessary to

combine the results of atomic physics with the study of analogous spectra in the laboratory

(where we have `full' control over the likely physical conditions) and then draw analogy to

the physical conditions of the solar atmosphere through the knowledge acquired.

This section will explain the principle of spectral line formation in the distinctive regions

of the solar atmosphere discussed previously in a heuristic8 manner. Indeed such regions,

particularly in the upper atmosphere (above the photosphere), depart signi�cantly from lo-

cal thermal equilibrium (LTE) and are known therefore as non-LTE plasmas. The `coronal'

regime in which we will work speci�es that we will consider electrons as the only particles

capable of collisionally exciting atoms to emit radiation. Such collisions are the dominant pro-

cesses for populating the atomic levels for allowed (electric dipole), intersystem and forbidden

transitions to be de�ned in due course.

Before we consider the formation of Ultraviolet (UV), extreme-UV (EUV) emission spec-

tra and obtaining plasma diagnostics of the upper solar atmosphere we have to make our

assumptions about the solar plasma clear to avoid ambiguity. The model of the upper solar

atmosphere used throughout this thesis (cf. the temperature, density and pressure models

presented of the previous chapter) is principally to make the calculation of atomic factors as

simple as possible. Therefore we require that :

1. The plasma is optically thin.

2. Atomic hydrogen, the major constituent, must be fully ionised.

3. The electron distribution is Maxwellian in nature.

4. The abundances of the elements in the gas are constant.

8Heuristic in the sense that we will not worry about the physical processes behind the rate coeÆcients in

the atomic rate equations for the time being, but will leave that for later discussion, see Chapter 6.
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5. Including self-induced radiation (point 1), photo-excitation and de-excitation e�ects can

be neglected.

So, taking all of these components together we can perform an analysis of the solar plasma

similar to that of Pottasch (1964).

2.2.0.1 Features in atomic spectra

Spectroscopic studies of the light emitted or absorbed by atoms and ions from the early

nineteenth century showed that each atom9 emits a characteristic spectrum. Indeed, it was

soon noticed that the spectrum itself was indicative of the electron structure of the atom. This

eventually led to a better understanding of the periodic table through the X-Ray spectroscopy

of Moseley (1913). The purpose of this short section is to introduce some spectroscopic

terminology.

The spectrum emitted by neutral atoms of a given element, say X, is called the �rst

spectrum of X and is denoted by X I; the spectrum emitted by the singly ionised X (i.e.

X1+) is called the second spectrum and is denoted by X II; and so on. It is then obvious that

the number of line spectra that an atom is capable of producing is equal to its atomic number,

Z. This means that we can observe spectra of H I, He I, He II, Li I, Li II, Li III, etc. Indeed,

emission lines from Fe XXVI (hydrogen-like iron) have been observed in solar are spectra,

see Neupert et al. (1962), for example. Similarly, we would expect that ions with the same

outer electron con�gurations have similar spectra; these are called isoelectronic sequences

and are usually named according to the �rst neutral member (e.g., the lithium isoelectronic

sequence is Li I, Be II, B III, C IV, N V, O VI, etc). Knowledge of such sequences allow us

to associate plasma diagnostics to particular transitions of the entire isoelectronic sequence

and is of particular use for probing the solar plasma because of the dependence of ionisation

on temperature (i.e. Te � z2104 K where z is the ionisation stage, z = 1 for a neutral atom)

as we will see in later chapters.

2.2.1 UV/EUV spectral line formation

With the assumptions listed above, the total power Pl radiated in a particular spectral line

labelled l, i.e. the atomic transition from level j to level i with respective energies Ej and Ei,

9The unquali�ed term \atom" will generally be used to mean either a neutral atom (a nucleus of charge

Ze+ surrounded by N electrons, with N equal to Z) or a positively charged ion (N < Z).
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from an optically thin plasma occupying a volume V is simply

Pl =

Z Z Z
V
h�jiAjinu(l)dV erg s�1 (2.52)

where h is Planck's constant, �ji is the frequency of the line, Aji (s
�1) is the Einstein A-

coeÆcient, and nu(l) (cm�3) is the population density of the upper level u(l) = j. The

expression for nu(l) = nj can be decomposed, for simplicity, into

nj =
nj
nion

�
nion
nel

�
nel
nH

�
nH
ne

� ne (2.53)

where
nj
nion

= f(ne; Te),
nion
nel

= g(Te),
nel
nH

and nH
ne

are the relative population of the upper

atomic level of the line, the ionic abundance, elemental abundance, and relative abundance of

H to electrons (having a value of 0:8 in the solar atmosphere) respectively. Full descriptions of

these quantities can be found in Jordan (1969, 1970), Jacobs et. al (1977, 1980) and Arnaud

& Rothenug (1985). From this point on, or unless stated otherwise, we consider only the

role of bound-bound (b-b) processes, i.e. those according to the
nj
nion

term.

The non-LTE rate equations for the coupling of levels j and i in a multi-level atom are

@ni
@t

+ v �
@ni
@x

=
D

Dt
ni =

X
j 6=i

njPji � ni
X
j 6=i

Pij ; (2.54)

where the term Pji = Rji +Cji simply represents the total transition probability (s�1) from

level j to level i and is a sum of the radiative (Rji) and collisional (Cji) terms. Pji is the

probability of a large number of atoms in an ensemble making the transition from level j to

level i. It is a function of time, peaking at P, say, and is often interpreted as a transition `rate'

statistically applying to the whole ensemble and not to any individual atom. The radiative

probabilities are Rji = Aji + ~JBji where ~J is the radiation �eld (implicitly taken to be

zero in these calculations, item 5 above) and Bji is the Einstein B coeÆcient of stimulated

emission. The collisional rates are Cji =
P

c nchvc�
jii where nc is the number density of

colliding particles which have a cross-section for making the transition from level j to i of

�ji, and nchvc�jii is the probability integral involving the distribution function of the colliding

particles. The transition rate per unit time is then

nchvc�
jii = nc

Z 1

0
f(vc)vc�(vc)

ji dvc s�1 (2.55)

where f(vc) is the velocity part of the distribution function. Since we are assuming that

electron collisions will dominate, and electrons thermalise rapidly, the most likely distribution

in this non-LTE low density regime will be the Maxwell-Boltzmann distribution. So the
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collision probability per second for the de-excitation (Ej > Ei) takes the form

Cji = �
�ji(Te)

gj
T
� 1

2
e cm�3 s�1 (2.56)

for Te in degrees Kelvin where � is a constant (� = 8:63 � 10�6 for electrons) and gj is

the statistical weight of level j. The quantity �ji(Te) is known as the `Maxwellian averaged

collision strength' and is usually a smooth but weak function of temperature (see, e.g., Gabriel

& Jordan 1971). The simple relationship between collisional excitation (Cij) and de-excitation

(Cji) coeÆcients is then, using the principle of detailed balance (n�iCij = n�jCji where n
� is

the LTE population), given by

Cij = Cji
gj
gi
exp

�
�Eji

kTe

�
cm�3 s�1 (2.57)

where k is Boltzmann's constant and Eji is the energy di�erence between levels j and i.

For a static medium (v � @ni@x = 0) in statistical equilibrium (@ni@t = 0) the rate equations

of equation (2.54) become

0 =
X
j 6=i

njPji � ni
X
j 6=i

Pij (2.58)

and on substituting for Pji and Pij as above we have

0 =
X
j 6=i

nj (Aji + neCji)� ni
X
j 6=i

(Aij + neCij) : (2.59)

However, this system of homogeneous equations is not closed, i.e. we require an equation to

�x the set for ni. Typically this is done by considering the abundance of the atom (Ab) such

that X
j

nj = Ab � nH (2.60)

holds where nH is the number density of Hydrogen. So, equations (2.59) and (2.60) form

a closed linear system (e.g. Pn = b) which can be solved for the atomic level populations

n, given P , the matrix of transition probabilities, and b = (0; : : : ; Ab � nH). Thus, we have

prescribed the current state of the atom for the assumptions made earlier.

Now, we concentrate on particular transitions within an atom and we begin with the

simplest case, a resonance line. A resonance line is one arising from allowed transitions from

levels collisionally excited from the ground state to the ground state. We can consider the

atom as a simple 3-level model (see �gure 2.6). The solution of the statistical equilibrium

equations is, for a transition from level j to level i,

neniCij = nj (Aji + neCji) (2.61)
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Figure 2.6: Schematic atomic ion containing just three bound levels. In this model, as

indicated above, only spontaneous radiative decays and collisions of the atom with electrons

are considered.
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where we note that Aji > neCji and ni = nion.

It is standard practice to de�ne a quantity Kl(ne(r); Te(r)) called the line emission co-

eÆcient, or emissivity, normalised to the electron density squared of the transition. This is

given by (cf. equations (2.52) and (2.53))

Kl(ne; Te) =
h�jiAji

4�

nj
nionne

nion
nel

nel
nH

nH
ne

erg cm3 sr�1 s�1 (2.62)

such that equation (2.52) becomes

Pl = 4�

Z Z Z
V
Kl(ne; Te)n

2
e dV erg s�1 (2.63)

where l is simply a label replacing the combination ji. The importance of Kl(ne; Te) will be

seen below as its dependence on density and temperature will help yield diagnostics of the

emitting plasma. However, this is an appropriate juncture to explain how emission lines are

classi�ed into three distinctive groups according to how their upper level is populated (see,

e.g., Dere & Mason 1981 and Mason & Monsignori-Fossi 1994) :

1. Allowed lines that are collisionally excited just from the ground level - resonance lines -

whose line emission coeÆcients are proportional to n2e (cf. equation (2.63)), with f(ne; Te)

of equation (2.53) essentially independent of ne.

2. Forbidden or intersystem lines with upper levels that are metastable. The radiative decay

rates of these lines are so small that the electron collisions compete as a depopulating

mechanism. The population of the metastable levels from which these lines originate and

their intensity behaviour fall into three stages of development, depending on the electron

density :

- When the density is low, radiative decay dominates and the line intensity has a similar

behaviour to that of an allowed resonance line (i.e. / n2e).

- At intermediate densities (ne �
Aji

Cji
; the critical density) the two mechanisms are com-

peting and the population of the metastable level becomes important and the line

intensity is proportional to nÆe, where (1 < Æ < 2).

- For higher electron densities the collisional process dominates and the metastable level

attains Boltzmann equilibrium and the intensity varies as ne.

These ranges of electron densities are dependent on atomic parameters and di�er for

individual ions and transitions.
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3. The intensities of allowed lines that are excited from low-lying metastable levels. Their

intensities are dependent on the population of the metastable level from which they are

excited. Once these levels attain a `reasonable' population, but not its Boltzmann value,

the line intensity will vary as nÆe (2 < Æ < 3). When the Boltzmann level is reached the

intensity varies as n2e.

2.2.1.1 Di�erential Emission Measures-DEMs

It is useful to de�ne another important diagnostic tool at this point; the Di�erential Emis-

sion Measure (DEM) function, which we de�ne by recalling equation (2.63) (incorporating

dependence on r)

Pl = 4�

Z
V
Kl(ne(r); Te(r))n

2
e(r) d

3r erg s�1: (2.64)

This equation, with full dependence on ne and Te included in the emission coeÆcient, was

studied by formulating the integrand in terms of a function of electron density and temper-

ature (Je�eries et al. 1972a, b). This function was later identi�ed (see Brown et al. 1991,

hereafter BDSA) as the bivariate DEM function of ne and Te, namely �(ne; Te). Following the

derivation of BDSA we make the following change of integration variable in equation (2.64):

d3r =
dnedTe

jrnej jrTej sin�ne;Te
dLne;Te cm3 (2.65)

Hence, reducing the volume integral of equation (2.64) to a line integral of the emissivity

along a line of constant ne, Te. Here �ne;Te (> 0) is the local angle between vectors rne and

rTe normal to surfaces Sne , STe of constant electron density and temperature respectively10,

see �gure 2.7. So, for every transition from level j to level i we have

Pl = 4�

Z
Te

Z
ne
Kl(ne; Te)M(ne; Te) dnedTe erg s�1 (2.66)

where, from BDSA, M(ne; Te) is de�ned as

M(ne; Te) =

I
Lne;Te

n2e
jrnej jrTej sin�ne;Te

dLne;Te K�1 (2.67)

Usually, one does not directly observe the total radiated power Pl, but the intensity, Il =

Pl=(4�S), where S is the area of the projected volume V . De�ning �(ne; Te) = M(ne; Te)=S,

which has units of cm�2 K�1, we �nd

Il =

Z
Te

Z
ne
Kl(ne; Te)�(ne; Te) dnedTe erg cm�2 sr�1 s�1 : (2.68)

10Noting that this is the solar atmosphere. `Standard' solar models which are very simplistic (see the

example in Chapter 1 -�gure 1.1). In a more realistic solar model we must accomodate regions where �ne;Te

is zero and the temperature and density gradients are parallel.
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Figure 2.7: Two surfaces of constant temperature STe and of constant density Sne intersecting

on a line Lne;Tne . �ne;Tne is the angle between the vectors rTe and rne normal to the surfaces

STe , Sne respectively (taken from BDSA).
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We are now in a position to de�ne the di�erential emission measure in ne, �(ne), as the

reciprocal density gradient weighted mean square electron density and, correspondingly the

di�erential emission measure in Te, �(Te), as the reciprocal temperature gradient weighted

mean square electron density. These more intuitive functions (in terms of diagnostics at least)

are obtained from equation (2.67) as follows:

�(ne) =

Z
Te
�(ne; Te)dTe cm�2 (2.69)

�(Te) =

Z
ne
�(ne; Te)dne cm�5 K�1 (2.70)

Thus, in terms of physical interpretation of a set of frequency integrated line intensities Il

alone, the di�erential emission measures in ne and Te form the spectroscopic basis for further

interpretation of the raw data.

2.2.2 Plasma diagnostics

In the previous section we saw how to classify the majority of spectral lines observed in the

upper solar atmosphere. In this section we present a double-edged description of obtaining

useful diagnostics of the emitting plasma; obtaining electron temperatures and densities.

The �rst de�nition is a purely heuristic, giving pictorial evidence to suggest that speci�c

diagnostics occur in each of the iso-electronic sequences mentioned above whereas, the second

is a much more mathematical description of obtaining a `good' diagnostic and will be of

considerable use in later chapters.

2.2.2.1 Electron temperature determination

It is important when attempting to infer the electron temperature (Te) to remember that

the plasma being observed is inhomogeneous and non-isothermal. Therefore, as is suggested

by the integral above, the contribution to a particular line intensity comes form a wide

range of densities and temperatures. The method described here will not directly allow the

diagnosis of the true inhomogeneity of the plasma present, say in a solar are where it is very

possible that most, if not all, ionisation stages are emitting in a very small volume of plasma.

However, this treatment will allow us to make an quantitative estimate of the `mean' electron

temperature of the plasma.

Several authors (Gabriel & Jordan 1969; Munro et al. 1971; Gabriel & Jordan 1971;

Dere & Mason 1981; Doschek 1987; Mason & Monsignori-Fossi 1994) have developed and

been actively using a technique involving two optically thin resonance lines with signi�cantly
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di�erent excitation energies since the development of UV/EUV spectroscopy in the early

1960s. Consider initially an isothermal plasma of electron density ne and volume V . The

ratio of two resonance lines originating in levels 2 and 3 and decaying to the ground state,

say level 1 (see �gure 2.10 with level 3 not metastable and compare with �gure 2.8), is given

by

P3
P2

=
E13

E12
�
C13

C12
(2.71)

where E13 = h�13 and E12 = h�12. So using equation (2.57) to substitute for the collisional

excitation terms above to �nd that

P3
P2

=
g2
g3

E13�13(Te)

E12�12(Te)
exp

�
� (E13 �E12)

kTe

�
: (2.72)

It is clear from this equation, given the � 's and E 's, that this ratio is only dependent on the

temperature and that this dependence comes almost entirely from the exponential term and

in particular when jE13�E12
kTe

j � 1. As stated above this measure is not an adequate measure

of Te because we have explicitly assumed the plasma to be isothermal which is clearly not

the case in the solar atmosphere, see Litwin & Rosner (1993) for physical discussion, or any

image of the UV solar atmosphere. Another more practical drawback of this method is due

to the fact that we require jE13�E12
kTe

j � 1 which implies a large wavelength separation of the

lines can make observation and line calibration diÆcult.

It is possible to de�ne mathematically this heuristic estimate of the electron temperature

in terms of �(Te), by considering a line labelled i for which Ki(ne; Te) is a weak function of

density, such as a resonance line. Ki(ne; Te) can then be replaced byKi(Te) = Ki(ne = n0; Te)

and so we have, from equations (2.68) and (2.69)

Ii =

Z
Te
Ki(Te)�(Te)dTe : (2.73)

For two such lines i and j, whose emission coeÆcients have di�erent functional dependence

on Te (generated by the exponential term above), the ratio of the two line intensities is then

given by

Rij =
Ii
Ij

=

R
Te

Ki(Te) �(Te) dTeR
Te

Kj(Te) �(Te) dTe
: (2.74)

If the plasma were homogeneous we could express �(Te) function as �(Te) = �0 Æ(Te � hTei)

such that, on substituting this expression into to equation (2.74) and integrating over the

whole temperature domain, we have

Rij =
�0Ki(hTei)

�0Kj(hTei)
(2.75)
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Figure 2.8: Grotrian diagram (Grotrian 1928) of all the atomic transitions for lithium-like

C IV showing all the transitions (mean wavelengths for multiplets) in the wavelength range

of the SOHO SUMER and CDS (150� 1610�A) spectrometers.
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Figure 2.9: Plot of the temperature sensitive ratio of two resonance lines
�
�312:42
�1550:77

�
of C IV.

A value of 0.15 for the line intensity ratio will yield a mean spectroscopic temperature hTei

of approximately 6� 105 K.

and on dividing throughout by �0 we may express Rij in terms of the `mean' spectroscopic

temperature, hTeiij , for the particular line pair (i; j), i.e.

Rij =
Ki(hTei)

Kj(hTei)
= Sij(hTeiij) (2.76)

where Sij(Te) = Ki(Te)
Kj(Te)

is a monotonic, bijective (invertible) function, that has a unique

inverse on the temperature domain considered when we restrict our study to resonance lines

only. Therefore, on inspection, the relation between hTeiij and the observed line ratios Rij

is given by

hTeiij = S�1ij (Rij) (2.77)

and can be represented pictorially in �gure 2.9.

2.2.2.2 Electron density determination

The ratio of emission lines with di�erent density dependence has been widely used as a

diagnostic of the electron density in the inhomogeneous solar atmosphere. However, Almleaky
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Figure 2.10: Schematic atomic ion containing just three bound levels (cf. �gure 2.6). In this

model we consider the additional e�ect when level 3 is metastable.

et al. (1989) and, more recently, Judge et al. (1997), have shown that such estimates are highly

ambiguous. The following is a description of some of the basic principles used to obtain such

an estimate. The treatment above has dealt solely with resonance lines and we have shown

that the ratio of their line strengths is solely dependent on temperature. However, for an

intersystem or forbidden line the upper level of the transition is a metastable (m) long-

-lived (Ami � Cmi) level where the population is comparable to that of the ground level.

Therefore atoms with metastable levels provide a good source of density diagnostics since

the populations of the other levels in the atom are a�ected in a delicate balance by their

presence.

So, considering �gure 2.10 where we have a simple atom with level 3 a long-lived metastable

level and looking at the ratio between transitions from levels 1 to 2 (a resonance line) and

levels 1 and 3 (an intersystem line), we have

n2A21 = nen1C12 and (2.78)

n3 (A31 + neC23) = nen1C13 : (2.79)
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We then have for the ratio

P2
P3

=
C12

C13
�
E12

E13
�

�
1 +

neC23

A21

�
; (2.80)

which has the same factor (C12
C13

) as the temperature case, but the density dependence arises

from the factor in brackets and especially when neC23 � A21, the density at which this occurs

is known as the \critical density".

Again, we can put this statement on a mathematical footing; we use an analogous ap-

proach to that of Almleaky et al. (1989). Consider an optically thin plasma that is isothermal

with Te = T0. The total emission of a line labelled i, given by equation (2.68) and equa-

tion (2.70) is

Ii =

Z
ne

Ki(ne) �(ne) dne; (2.81)

for Ki(ne) = Ki(ne; Te = T0). Since the plasma has no unique ne, we can nevertheless de�ne

a spectroscopic `mean' electron density for the any ratio of lines displaying some degree of

density sensitivity, for instance using a resonance line and an intersystem line from a common

ionisation stage of a particular atom, as above. For this pair (i; j), we seek the electron density

of a homogeneous plasma that would yield the same line ratio, Rij , as the inhomogeneous

plasma under observation. To achieve this we de�ne �(ne) = �0 Æ(ne � hnei) , where hnei is

the `mean' spectroscopic electron density as de�ned earlier. Given this, we follow the steps

leading to equation (2.77) where we now have

hneiij = G�1
ij (Rij) ; (2.82)

where Gij is an invertible function (cf. Sij of equation (2.77)) in the plasma regime we are

considering. Again, this process can also be represent pictorially, see �gure 2.11.

2.2.3 The nature of errors in line emissivities

We have seen that, for resonance lines, the line emissivity (equation (2.62)) for a line labelled

i can be expressed as

Ki = �i Xi Yi (2.83)

where �i is the Maxwellian-averaged collision strength, as above. We have simpli�ed the

components, made use of equation (2.61), introduced X = nion
nel

the ionisation fraction and

Y = nel
nH

the abundance of the element relative to hydrogen. To obtain an error estimate ÆKi

for Ki we note that

ÆKi

Ki
=

s�
Æ�i

�i

�2
+

�
ÆXi
Xi

�2
+

�
ÆYi
Yi

�2
; (2.84)
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Figure 2.11: Plot of the density sensitive ratios
�
�1401:16
�1404:81

; �1401:16�1399:78

�
of O IV. A value of 4.0

for both line intensity ratios will yield mean spectroscopic density hnei of approximately

3� 1010 cm�3.
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and remembering that we have previously assumed that the elemental abundances are con-

stant, the emissivity errors are dominated by a elementary factors, and they are (Judge et al.

1997) :

- Errors in electron-ion excitation cross-sections (Æ�i) depend on the isoelectronic sequence

to which the ion belongs. They also depend critically on the type of transition (permit-

ted, forbidden, etc.), relativistic e�ects and the assumptions made when calculating the

collisional cross-sections (cf. the assumptions we made earlier). A recent laboratory study

of the resonance lines of C IV (see �gure 2.8) measured cross-sections with an accuracy of

�7% (Savin et al. 1995).

- Errors in the ionisation balance (ÆXi) that depend, not only the cross-sections but the

structure of the emitting plasma (departures from equilibrium, Judge et al. 1995, of equa-

tion (2.54)) itself. These errors, systematic in nature for a particular ion, are likely to

be of the order �20%. If non-equilibrium processes are present they can be much higher

(P. G. Judge - Private Communication).

When considering transitions involving metastable levels calculation of the Einstein A-

-coeÆcients is important (cf. the statement after equation (2.80)) and from these arise an

additional source of error. So, given equation (2.79) we have, making simpli�cations similar

to those above

ÆKi

Ki
=

s�
Æ�i

�i

�2
+

�
ÆXi
Xi

�2
+

�
ÆYi
Yi

�2
+

vuut� ne
nec + ne

�2  �ÆAi

Ai

�2
�

�
Æ�i

�i

�2!
(2.85)

where nec is the aforementioned critical density; for ne � nec this equation reduces to the

form of equation (2.84).

Given this information Judge et al. (1997) conclude that errors in the line emissivities

range upward from �30% and are systematic in nature. The systematic nature of errors we

will use to our advantage in the analysis of Chapter 4. However, from these statements it

might be reasonable to ask \ Why do we not simply set up a laboratory and measure the

cross-sections needed to solve equation (2.54) directly ?". There are several reasons for this,

and they are :

1. The number of cross-sections required for reliable determination of the emission coeÆcients

scales as kn(n � 1) where k is a constant between one and two and n is the number of

bound levels in the model.
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2. Each cross-section has to be determined at all energies with the velocity distribution func-

tion at an energy resolution suÆcient to allow accurate calculation of the rate coeÆcient.

3. In the solar atmosphere the atomic collision cross-sections are needed in the limit kTe �

Ej�Ei and since the kinetic energy of the impacting particle is much less than the energy

to make the transitions. Performing such experiments at low energies makes the system

susceptible to external (electric and magnetic) e�ects.

4. The lifetimes of some of the atomic levels are too short to allow measurement (at all, in

some cases) of the rate coeÆcients.

5. The production and containment of extremely highly ionized species (e.g., those more than

three times ionised found in regions of the solar corona) in a laboratory plasma is diÆcult.

Together, these facts mean that there are very few measurements of atom-electron cross-

-sections available from laboratory experiments. Indeed, most are determined purely from

theoretical work, see the volume edited by Brown & Lang (1988).
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Chapter 3

Spectral decomposition by genetic

forward modelling

This Chapter

In this chapter we take a brief side-step to look at a diagnostic (optimisation) method used

extensively in the following chapters of this thesis; the Genetic Algorithm (GA). To demonstrate

their operation and coding we apply a simple GA to the analysis of real and simulated line spectra

(the GA applications presented in later chapters are merely extensions of this method). In

particular, we show that this GA based technique experiences none of the user bias or systematic

problems that arise when faced with poorly sampled or noisy data. An important feature of this

technique is the ease with which rigid a priori constraints can be applied to the data. These

constraints make the GA decomposition much more accurate and stable, especially at the limit

of instrumental resolution, than decomposition algorithms commonly in use.

The launch of the SOlar and Heliospheric Observatory (SOHO) satellite discussed in

Chapter 1, has renewed interest in the classi�cation (Seely et al. 1997; Laming et al. 1997)

and interpretation (Brekke et al. 1997; Judge et al. 1998) of high spectral resolution ultra-

violet (UV) and extreme ultraviolet (EUV) emission spectra. The majority of these spectra

come from the Solar Ultraviolet Measurement of Emitted Radiation (SUMER), and Coronal

Diagnostic Spectrometer (CDS) instruments onboard SOHO (Wilhelm et al. 1995; Harrison

et al. 1995).

A �rst step in the analysis of emission line spectra is to identify and measure properties of

lines believed to be present. This is usually achieved by associating (subjectively) the observed

spectral line pro�les with ionic and atomic transitions of `known' laboratory wavelengths.
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From these possibly biased decompositions, physical models of the underlying plasma are

sought using processes discussed in the following chapters of this thesis. In an e�ort to

obtain the best possible scienti�c results from their spectra, the CDS and SUMER teams

have set about ways to produce the most `reliable' decomposition; see Brynildsen (1994) for

more details.

Standard spectral decomposition techniques unfortunately prove to be unstable when

presented with data of low signal to noise ratio, or data that is poorly sampled. In particular

these instabilities cause subtle di�erences in the decomposition of each spectrum and can

lead to signi�cantly di�erent physical interpretations. This has prompted us to search for

a method that can provide spectroscopists with reliable decompositions of observed spectra

that are as free as possible from subjective bias.

We use a heuristic approach to decomposition. We use a Genetic Algorithm (GA) to

�t model line pro�les, which for our purpose we chose to have Gaussian form, to provide a

simple parameterisation of the spectrum under analysis. This approach exploits the stability

and optimisation capabilities of natural selection (Darwin 1859). Sections 3.1.1 and 3.1.2

describe the basic GA formalism, and an introduction to our Gaussian �tting GA, hereafter

referred to as Ga-GA.

The GA technique is applied under ideal conditions (to `simple' noiseless test spectra) in

Section 3.2.1. This �rst test also helps to highlight how well genetic operators are suited to

this task. Section 3.2.2 gives a much more stringent test of the how a GA performs when

�tting spectra containing unstructured random noise. Here, the GA's stability in the presence

of random Gaussian noise is compared to that of standard pro�le �tting and optimisation

algorithms. We show that these standard algorithms are blighted by possible user bias which

is not present with the GA technique. To aid further comparison of our GA technique to

standard analysis algorithms we have constructed model spectra with realistic noise and

continuum/background levels. The results are discussed in Section 3.2.3.

The ability of the GA approach is given a �nal test in Section 3.3 on quiet Sun SUMER

spectra. There we compare our results with those obtained from an analytical decomposition

performed by Judge et al. (1998). We note that their technique used additional information

not available to the GA.

Although much emphasis must be placed on the fact a GA requires minimal user input,

in certain circumstances user input can prove useful, such as cases where relative wavelengths

and intensities are well known from atomic physics. Such additional constraints can (almost
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trivially) be `hard-wired' into the algorithm. Section 3.3.1 highlights the possibilities of

applying rigid a priori constraints to the observed spectrum.

3.1 Motivation and method

Prior to the launch of SOHO, a study was undertaken Brynildsen (1994) to identify the `best'

pro�le �tting package for the CDS and SUMER instruments discussed previously. The study

compared various algorithms for �tting Gaussian pro�les, or combinations thereof.

The common denominator linking all of the pro�le �tting algorithms studied by Brynild-

sen (CURVEFIT - from the Interactive Data Language (IDL) userlib, and AMOEBA - A

\downhill" SIMPLEX algorithm from Press et al. 1992, and others) is the need for user input

regarding starting points for each parameter in the search. This potential source of user

bias, and the reduced quality (in terms of �t to the data) of the parameterisation form the

principal motivation for this chapter, and indeed we show that they are not present using a

GA technique beyond the absolute minimum requirement of supplying a `line list' of lines to

be identi�ed.

Using a GA for this pro�le �tting problem can have many advantages not available to the

user of predictive line �tting algorithms. Considering one of the many advantages noted in

Charbonneau (1995), a GA is not de-stabilised by noise in the data; it will merely attempt

to achieve its goal, locating the `best' pro�le. The GA will attain this goal, the introduction

of data noise will merely a�ect the convergence time of the algorithm.

We present a `simple' GA, called Ga-GA, which we show to be stable against reasonable

noise levels and to have no source of possible user bias. The following sections discuss its

performance in detail.

3.1.1 Overview of a simple Genetic Algorithm

Genetic Algorithms are inspired by the mechanism of natural selection and basic genetic

operators, occuring naturally in biological systems, see Holland (1962). Consider a typical

numerical optimisation task, where a parametric model is to be �t to data in a manner

that maximises the closeness of �t, or �tness (as measured, for example, by a �2 statistical

estimator). A genetic algorithm is an iterative scheme that operates on a population of trial

solutions to the problem in the following way :
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1. Construct an initial population using random values for the model parameters, and eval-

uate their �tness.

2. Select a subset of the �tter individuals, and breed them to produce a new population.

3. Evaluate the �tness of each individual in the new population.

4. Replace the old population with the new one

5. Check whether the �tness has reached some pre-de�ned tolerance, or the number of iter-

ations (or generations) has reached its maximum; if not return to step 2.

GAs carry out a form of forward modelling, by performing a heuristic search of the prob-

lem's parameter space. What distinguishes a GA from other forward modelling methods (such

as Monte Carlo simulation) is primarily the way in which new trial solutions are constructed

from the current population of trial solutions (cf. step 2 above).

At the most basic level a GA can be viewed as a processor of a set of strings, each encoding

a particular version of the model being optimised. A subset of the �tter individuals of the

current population are selected and paired, and the de�ning strings of each such pair are

subjected to the action of two genetic operators: cross-over and mutation. The cross-over

operation involves dissection of the two parent strings at a randomly chosen point along

the string, followed by the interchange of the dissected components. In this way two new

strings are produced from two parent strings (see �gure 3.1). The second operator, mutation,

involves the replacement of a few randomly selected digit in the two strings produced by

the cross-over operation with randomly generated digit values. Its primary purpose is to

maintain a suitable level of variation in the population, which is essential for selection to

operate. The combination of stochastic genetic operators with �tness-based selection yields a

powerful search algorithm that can move away from secondary extrema and locate the global

extremum in parameter space (see, e.g., Goldberg 1989; Davis 1991; Charbonneau 1995;

Mitchell 1996)

In this chapter we are using a GA version which implements a scheme involving a variable

mutation rate, i.e. as the population becomes more degenerate (little variation) the prob-

ability of a mutation taking place is correspondingly increased, and makes use of elitism,

the best individual in the old generation is not replaced unless there is a �tter one in the

new generation. The selection of individuals in the breeding operator is carried out using a

roulette-wheel algorithm (see Davis 1991, Ch. 1), meaning that individuals with higher �tness
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are associated with sectors of correspondingly large angle on the roulette wheel. This roulette

wheel, when `spun', ensures that although all individuals are capable of breeding, the �tter

individuals have a slightly higher probability of being selected.

In many ways our GA resembles that of Charbonneau (1995), but it also contains some

features of the GA presented in Diver & Ireland (1997). Indeed, in the cases presented in Sec-

tion 3.3 we have employed a variation on the algorithm PIKAIA, presented in Charbonneau

(1995), to maximise speed and accuracy.

3.1.2 Fitness evaluation

Isolation of particular features (e.g. line width and absolute intensity ) in an emission line

spectrum made up of N lines is a procedure used by many standard �tting algorithms,

with many using line identi�cation as their primary `search' (cf. the user input given to

the algorithms mentioned above). On acquiring the line position they sequentially alter the

amplitude or the 1
e width of the Gaussian pro�le(s) to achieve the `best' �t to the target.

However, since the observed emission line spectra can and do, contain a large number of

pro�les, it is possible to adopt a method which solves for all lines simultaneously (see e.g.,

Diver 1995; Diver & Ireland 1997).

When Ga-GA `recognises' spectral features, i.e. one of the Gaussian describing parameters

or an entire pro�le, the corresponding �nal solution will be a better representation of the

target and will result in that string of parameters being given a higher �tness. Since Ga-

GA uses the mechanics of natural selection, a genotype with a higher �tness value will be

prevalent in the current and future generations until replaced by a `�tter' individual.

Ga-GA uses parameter strings of length 3 � N , where N is the estimated number of

Gaussian pro�les in the line spectrum to be analysed, and three because it requires three

Cross-Over Point

Parent 1

Parent 2

Child 1

Child 2

Figure 3.1: A pictorial explanation of the main GA breeding operator, cross-over.
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parameters to describe a general Gaussian pro�le. These parameters are absolute position in

wavelength, at channel (X), amplitude (A), and the Gaussian's 1
e value (W ) and are encoded

as a string in the following order :

[X1; A1;W1; : : : : : : ;XN ; AN ;WN ]

A string of the form above de�nes a sequence of N Gaussian pro�les that de�nes a synthetic

spectrum, this computed pro�le is an individual's phenotype. It is this phenotype pro�le that

is retained for comparison to the observed spectrum. Phenotype pro�les are calculated using

the standard pointwise Gaussian formula, i.e. for a particular channel x, usually associated

with wavelength, in Gaussian i (Gi) :

Gi(x) = Ai exp

 
� (x � Xi)

2

W 2
i

!
(3.1)

The N Gaussian pro�les derived from a particular genotype string are summed to form the

`unique' phenotypic pro�le for genotype j, P (x)j (with x meaning for all channels x). P (x)j

is given by :

P (x)j =
NX
i=1

Gi(x) 8x (3.2)

Only once P (x)j has been computed do we calculate an error measure between it and the

target. The error measure of a particular genotype (E(x)j) depends on several factors; the

square pointwise di�erence of the target and the corresponding phenotype (C(x), and P (x)j),

the number of parameters in the calculation (3 � N), the number of points summed over

(Ndata) and an estimate of the noise level in the data (�data(x)). Thus, E(x)j (e�ectively a

normalised �2 measure) is given by :

E(x)j =
1

(Ndata� 3N)

X
x

�
(C(x)� P (x)j)

�data(x)

�2
(3.3)

with E(x)j � 1 indicating a `good' �t.

This measure is used to evaluate the �tness of each genotype. It is the �tness value that is

used to rank all the genotypes in a particular population into ascending order and to `weight'

the roulette wheel of Section 3.1.1.

3.2 Results

This section details the results of Ga-GA applied to simulated target data sets which have a

known level of noise added. Section 3.2.1 discusses the performance of Ga-GA in the absence
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of data noise (except for very small numerical rounding errors). Sections 3.2.2 and 3.2.3

provide ideal circumstances to test the performance of Ga-GA, against that of the two standard

algorithms mentioned earlier; CURVEFIT and AMOEBA, for data with a realistic noise level

and with a noisy background present (Sections 3.2.2 and 3.2.3 respectively). Section 3.2.3

will also show the ease with which additional spectral features may be incorporated into the

analysis.

3.2.1 Application to noiseless target spectra

We use Ga-GA to analyse three noiseless targets, i.e. we replace �data(x) by 1 in equa-

tion (3.3), each corresponding to a di�erent Gaussian con�guration. The three test tar-

gets are: 1) A single `wide' Gaussian with the target genotype given by three parameters,

[X AW ] = [ 50 100 20 ]. 2) Two `joined' Gaussians corresponding to the six parameter geno-

type [ 40 100 20 80 90 15 ], and 3) a more complex �ve Gaussian con�guration with the �fteen

parameter target genotype given by [ 10 30 5 22 60 1 26 40 3 43 70 5 55 60 5 ].

Each case was analysed ten times (to allow performance statistics to be compiled), each

run with a di�erent initial population, for a �xed number of generations. It is also possible

to con�gure Ga-GA to run until it achieves a �xed E(x) although for certain types of analysis

this method is unfavourable (Charbonneau & Knapp 1996). The number of generations used

in each case is di�erent however, and varies with the increase in complexity of the target

solution. Therefore target 3 typically requires a 1200 generation run, which is considerably

more than the 200 and 500 generation runs required for targets 1 and 2 respectively.

The returned parameterisation of each target is given in Table 3:1. The subscript T

quantities (e.g. XT ) are the target parameters and the subscript G quantities (e.g. XG) are

the corresponding mean values returned by Ga-GA after multiple �xed generation runs. It is

clear from the results presented in Table 3:1 that Ga-GA obtains a very good representation of

each target (within the errors). The errors in the parameters are global error estimates and

are calculated in a Monte Carlo fashion, i.e. we perform multiple runs of Ga-GA each with a

di�erent initial population, this is achieved by initializing the random number generator with

a di�erent seed (Charbonneau & Knapp 1996). This Monte Carlo approach `forces' Ga-GA

to search the parameter space from a di�erent starting point each time. This will also allow

the calculation of `mean' values for each of the parameters.

Figure 3.2 shows a plot of target 1 (solid line) and the pro�le derived from the `�ttest'

genotype (4) after only 200 generations with the E(x) = 2:476 � 10�4. Similarly, �gure 3.3
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shows the pro�le constructed from the �ttest genotype, E(x) = 3:296 � 10�3, for the double

Gaussian con�guration of target 2. Figure 3.4 demonstrates Ga-GA's handling of the more

complex case 3, resulting in E(x) = 1:984�10�4 of the �ttest genotype after 1200 generations.

For these test cases �nal values of E(x), if we doubled the number of generations, will be

limited by numerical precision and would possibly attain no better values than those given

and it must be emphasised that these results are for one particular run of Ga-GA from the

ensemble of 10 runs.

We show, in �gure 3.5, the decrease in E(x) with generation number for the full ensemble

of runs (indicating the mean E(x) (solid line), extrema (dashed line) and median (dotted

line) for each generation step) for each of the test cases above. These plots demonstrate the

power of Genetic Algorithms as optimisation tools. The steplike structure is clearly visible

in all three plots, although to a much greater extent in the uppermost plot. Such steps occur

when Ga-GA suddenly obtains a new `�tter' value for one (or more) parameter(s), the long at

`plateaus' are points where the current `best' in the population hasn't changed or when the

population is largely degenerate, i.e. all the individuals have very similar genotypes. These

mutation jumps will occur because the mutation rate has been allowed to increase, and will
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Figure 3.2: Test run for Ga-GA, taken from the ensemble of ten runs, for the noiseless single

Gaussian target (solid line) of Case 1 and the pro�le modelled by Ga-GA (4).
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Figure 3.3: Test run for Ga-GA, taken from the ensemble of ten runs, for the noiseless double

Gaussian target (solid line) of Case 2 and the pro�le modelled by Ga-GA (4).
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Figure 3.4: Test run for Ga-GA, taken from the ensemble of ten runs, for the noiseless �ve

Gaussian target (solid line) of Case 3 and the pro�le modelled by Ga-GA (4).
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Table 3.1: Results for cases 1), 2) and 3) described above. Subscript T quantities indicate

target parameters, and subscript G quantities are the mean after multiple evolutionary runs.

Similarly, the values of hE(x)i are the �nal mean values ofE(x). The errors for each parameter

are calculated as the means of the ten run ensemble.

XT AT WT XG � ÆXG AG � ÆAG WG � ÆWG

Case 1. hE(x)i 5:226� 10�4 200 gens.

50:00 100:0 20:00 50:000� 0:000 100:002�0:003 20:002� 0:001

Case 2. hE(x)i 3:779� 10�3 500 gens.

40:00 100:0 20:00 40:002� 0:002 100:007�0:007 20:004� 0:003

80:00 90:00 15:00 79:997� 0:002 89:998� 0:003 14:999� 0:002

Case 3. hE(x)i 7:623� 10�4 1200 gens.

10:00 30:00 5:000 9:998� 0:001 30:003� 0:019 4:997� 0:004

22:00 60:00 1:000 21:997� 0:001 59:661� 0:181 0:995� 0:002

26:00 40:00 3:000 25:983� 0:007 39:867� 0:068 3:002� 0:006

43:00 70:00 3:000 43:000� 0:000 69:951� 0:028 3:001� 0:001

55:00 60:00 5:000 54:999� 0:001 59:964� 0:014 5:003� 0:001

thus introduce new genetic material at a higher frequency.

Figure 3.5 also justi�es our earlier claim that more complex targets (more parameters)

require a greater number generations in the run. As with any optimisation method the plots

show how the gradient of E(x) lessens with the increase in the number of parameters in the

genotype, the increase in the number of generations required for a GA to evolve an acceptable

solution increases with the dimension, D, of the search space; typically it does so in a manner

that is highly problem dependent, but often ends up as being a low (order unity) power of

N . So such convergence plots provide evidence to suggest that we have not yet evolved a

`perfect' match for the target. This may be estimated by looking at the gradient of the plot

at the end of its evolutionary run. The center and bottom plots in �gure 3.5 show that the

evolutionary process may not be �nished.

3.2.2 Application to a `noisy' target spectrum

Reliable analysis of a `noisy' target must be the benchmark for any spectral decomposition

technique. We therefore compare the performance of Ga-GA to that of the AMOEBA and
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Figure 3.5: Convergence of E(x) against generation number for each of the three cases in

Section 3.2.1. Top panel : Case 1 (single Gaussian), Middle panel : Case 2 (two Gaussians) and

Bottom panel : Case 3 (�ve Gaussians). For each generation step the mean E(x) (solid line),

median (dotted line) and extrema (dashed lines), for the ten run ensemble, are indicated. It

is clear that, when a relatively `poor' parameterisation is present, the di�erence between the

median and mean of E(x) is demonstratably e�ected, this e�ect is evident in the top and

bottom panels.
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CURVEFIT algorithms in decomposing a `noisy' �ve Gaussian target, again with Ga-GA

results the mean of ten runs. The target is generated by the same �fteen parameter genotype

as case 3 of Section 3.2.1 ([ 10 30 5 22 60 1 26 40 3 43 70 3 55 60 5 ]) to which we now add 15%

`random' noise. The noise is set to be normally distributed about the data with an r.m.s.

amplitude of 15%, so �data(x) = 0:15C(x) in equation (3.3).

The results of the calculations for each algorithm1 are shown in Table 3:2 where Ga-

GA achieves the lowest E(x) (1:889), by a factor of six from CURVEFIT (12:961) and by

a factor of about ten from AMOEBA (18:626). It must be noted that all produce `good'

parameterisations of the spectrum given the severe noise present, but bear in mind that the

latter two algorithms are practically given the target parameters as a startpoint, and are

hence heavily inuenced by the user. This is de�nitely not the case with Ga-GA. CURVEFIT

and AMOEBA also exhibit another behavioural pattern not observed with Ga-GA; they will

occasionally become `stuck' at points in the solution space where hope of convergence to the

target is lost2. This does not happen in every run, but indicates to the user that a single run

using either method is not enough to guarantee a reliable parameterisation.

Figure 3.6 shows the results of Ga-GA (�), CURVEFIT (+) and AMOEBA (}) oper-

ating on the �fteen parameter, �ve Gaussian target. The pro�le shown for Ga-GA, as in

Section 3.2.1, is the `�ttest' phenotype from the ten di�erent runs. It is clear from the results

in Table 3:2, and the plots in �gure 3.6 that the sharp features of Gaussian two (at a possible

limit of resolution) present CURVEFIT and AMOEBA with a very awkward test. Indeed,

by inspection of the errors quoted in Table 3:2 it is possible to see the feature(s) that Ga-GA

�nds most awkward to `identify', these are the amplitudes A2, A3 and A4.

3.2.3 Application to a target with a background level

We now consider the case where the target has a considerable background level. A GA

approach makes inclusion of such a background, or continuum, extremely simple. To show

this, consider a parameterisation of the background by addition of a quadratic of order n, an

example for n = 2 is given in equation (3.4). As an example, consider a new three Gaussian

con�guration [ 10 90 6 50 70 3 80 40 4 ] with 5 % noise (�data(x) = 0:05C(x)) and background;

the alteration to the �tness evaluation routine is minimal. We add the quadratic form to the

1It should be noted that CURVEFIT and AMOEBA were initialised with a guess of each parameter that

is within �2 the target parameter value.

2The interested reader is directed to Charbonneau & Knapp (1996) for a discussion of this e�ect.
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Figure 3.6: Performance comparison plot between Ga-GA, AMOEBA and CURVEFIT. They

are compared using the target of Section 3.2.2 with 15% added random noise. See also

Table 3.2.

67



3.2. RESULTS

Table 3.2: Details of the target parameters(PT ), genetically modelled solution returned by Ga-

GA and the deterministic routines for the �fteen parameter con�guration with 15% normally

distributed random noise. Ga-GA results and CPU times (TCPU) are the mean of an ensemble

of ten runs. The CPU times are normalised to the CPU time of a CURVEFIT run.

P PT AMOEBA CURVEFIT Ga-GA

X1 10:00 10:340 9:317 10:305� 0:001

A1 30:00 31:002 29:700 30:433� 0:011

W1 5:000 5:101 5:062 4:908� 0:003

X2 22:00 21:552 21:092 22:024� 0:001

A2 60:00 45:021 27:985 81:160� 0:073

W2 1:000 1:253 1:744 0:947� 0:001

X3 26:00 25:790 25:305 26:187� 0:009

A3 40:00 38:408 35:121 38:506� 0:031

W3 3:000 2:843 3:051 2:856� 0:006

X4 43:00 43:210 42:100 43:122� 0:001

A4 70:00 73:502 67:914 73:611� 0:017

W4 3:000 2:915 3:138 2:919� 0:001

X5 55:00 54:887 54:016 55:018� 0:001

A5 60:00 61:449 59:015 61:433� 0:001

W5 5:000 5:055 5:265 5:050� 0:001

TCPU 114.125 1.000 109.312

E(x) 18:626 12:961 1:889
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Figure 3.7: Plot of the three Gaussian con�guration [ 10 90 6 50 70 3 80 40 4 ] and the

background parameters, a = 30:0; b = 0:5, and c = 0:002 with a 5% random noise level. See

also Table 3.3.

standard phenotype calculation of equation (3.1), which then becomes:

P (x)j = a+ bx+ cx2 +
NX
i=1

Gi(x) (3.4)

where a, b, and c are taken from the adapted genotype by adding [ a b c ] to the Gaussian

description parameters. To generate the target the background parameters are assigned the

values a = 30:0; b = 0:5 and c = 0:002.

A plot of the target solution (broken line) and the best phenotype (�) is shown in �gure 3.7.

The �gure also shows the pro�le returned by CURVEFIT (+) and that returned by AMOEBA

(}). Ga-GA's estimate of the background parameters are a = 29:243; b = 0:554 and c = 0:002

(with respective errors given below). Ga-GA results were returned after 1000 generations and

the mean �nal E(x) was 0:8664, with CURVEFIT giving a statistically equivalent �t (0:8600)

and AMOEBA by a factor of two (2:000). The full results of the parameterisation for all

three algorithms are given in Table 3:3.
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Table 3.3: Results from Section 3.2.3 for a target (P (T )) with �xed background level and

5% normally distributed random noise. Again, Ga-GA results and CPU times (TCPU) are the

mean of an ensemble of ten runs. CPU times are normalised to that of a CURVEFIT run.

P PT AMOEBA CURVEFIT Ga-GA

X1 10:00 9:810 9:172 10:131� 0:017

A1 90:00 82:404 88:062 90:926� 0:529

W1 6:000 6:020 5:980 6:045� 0:056

X2 50:00 49:100 49:160 50:101� 0:001

A2 70:00 60:001 63:526 68:474� 0:121

W2 3:000 3:312 3:238 3:059� 0:009

X3 80:00 80:103 79:469 80:429� 0:001

A3 40:00 41:261 37:544 38:340� 0:077

W3 4:000 4:121 4:303 4:357� 0:015

a 30:00 31:180 31:740 29:243� 0:964

b 0:500 0:501 0:486 0:554� 0:037

c 0:002 0:002 0:002 0:002� 0:000

TCPU 80.134 1.000 75.321

E(x) 2:000 0:8600 0:8664
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3.3. ANALYSIS OF A QUIET SUN SUMER SPECTRUM

3.3 Analysis of a quiet Sun SUMER spectrum

To test Ga-GA on real data we chose to analyse a spectral region in the SUMER wavelength

range that is known to su�er from blending problems, both between spectra of di�erent

optical orders as well as just wavelength coincidences. Those problems resulting from blends

between lines that happen to overlap in the �rst and second grating orders can be decomposed

experimentally, and thus serve as a limited check on the GA approach.

The dataset analysed here was obtained on October 26th 1996, with the 1�300 arcsecond

slit crossing the north polar limb, using SUMER's B detector. Data were acquired in the

1400 �A spectral region, containing strong lines of Si IV, O IV, and O III (in second order),

as well as other weaker lines.

The observing sequence was designed to obtain data between 1399 and 1408 �A (and in

the second order spectrum with wavelengths at half of this range) on both the bare and

KBr coated part of the detector, sequentially. The exposure time on the KBr part was

180 seconds, and 360 seconds on the bare part. The bare and KBr regions of the detector

have very di�erent sensitivities to �rst and second order spectra. Assuming that the spectra

did not change signi�cantly between the bare and KBr exposures, the di�erent count rates

acquired on the two regions allow one to decompose the spectrum analytically into �rst and

second order components, I1 and I2 through the following equations

Cts(KBr) = k1I1 + k2I2 (3.5)

Cts(bare) = b1I1 + b2I2 (3.6)

where Cts(KBr) and Cts(bare) refer to the count rates per pixel per second on the KBr

and bare parts of the detector, I1, I2 are intensities of the �rst and second order spectra,

and k1, k2, b1, b2, are (known) instrument sensitivities de�ned through these equations.

Figure 3.8, top panel, shows Cts(KBr) and its components, k1I1 and k2I2. Values for I1 and

I2 were obtained using measurements of Cts(KBr), Cts(bare) and instrumental sensitivities

discussed by Judge et al. (1998). Figure 3.8 also shows Cts(bare) and its components, in the

bottom panel. In each case the count rates are averaged over 300 spatial pixels, including

the solar limb, and time during the exposures.

Shown in the top panel of �gure 3.9 is a decomposition performed using Ga-GA based

only upon the Cts(KBr) spectrum shown in the upper panel of �gure 3.8. This is simply a

`blind' �t, using no prior information about the spectrum, except that we expect between 16
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Figure 3.8: The 1400 �A region of the solar spectrum as measured using the SUMER

instrument (see text for details). The top panel shows the average spectrum, in

counts/pixel/second, recorded on the KBr region of the detector. Positions of known strong

lines are marked- the positions of lines of O III are marked assuming that they are formed in

the second order. The bottom panel shows the same thing, but recorded on the bare part of

the detector. The lines plotted with symbols show the spectral decomposition into �rst and

second order lines using the known sensitivities from SUMER.
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and 20 Gaussians to be present with on constant background. Such `blind' �ts show that we

can obtain a reliable decomposition of the entire spectrum. An example where a `blind' run

is signi�cantly better than one where a priori knowledge is used to aid in the decomposition

is given below (see Table 3.4).

3.3.1 Using Additional Knowledge

Usually, extra information about the spectrum is known, and it may be needed for some cases.

This information can be `hard-wired' into Ga-GA easily. For example, we could demand that

the spectral decomposition must not contain spectral detail narrower than the instrumental

width (�inst). Or, we could specify that relative positions (or intensities) of lines from the

same ion, known to great accuracy from laboratory measurement, be �xed to certain values.

Such constraints can be incorporated into the GA through a simple modi�cation of the �tness

evaluation, equation (3.3). For such an example we might use:

E(x) = �2 + CiH
2(Wi; �inst) +Dij

�
(Xi �Xj)� (X lab

i �X lab
j )

�2
+ : : : (3.7)

where we introduce the additional constants Ci and Dij to control the `trade-o�' between �2

and the newly incorporated information, and where H(Wi; �inst) will weight the optimisation

against features narrower than �inst. A future version of Ga-GA may take advantage of this

additional information to act as desktop on-line plasma analysis package. Recall however,

that the number of parameters in the calculation e�ects the rate of convergence (Section 3.2.1

and Section 3.2.2).

The lower panel of �gure 3.9 shows the results of a Ga-GA decomposition where we have

included a line list of all the lines marked in upper panel of �gure 3.8, the implementation

of this is discussed below. The `�xed' wavelength decomposition3 (see results in Table 3.4)

tells us additional information about the spectrum; there is an average redshift of 0.070 �A of

the lines in the list from their reference position. This corresponds to a velocity of around 10

km/s. The comparison of the contributions between �rst and second order lines in the 1404

- 1408 �A region shows that Ga-GA can successfully decompose a real, convoluted spectrum,

into meaningful components.

3The pro�les computed are allowed to deviate from the reference wavelength by, at most 0:1 �A.
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Figure 3.9: Comparison between Ga-GA decomposition and the analytic decomposition of

the SUMER spectrum in �gure 3.8. The top panel shows the decomposition from the Ga-GA

algorithm using only the KBr data from the top panel of �gure 3.8. The bottom panel shows

the decomposition from a single run of Ga-GA using constrained wavelengths in the �tness

calculation. See Table 3.4 for the details of the runs with constrained wavelengths.
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Table 3.4: This table contains the results of Ga-GA analysing the SUMER spectrum of

�gure 3.8 where the wavelengths, h�Gi (�A), intensities, hIGi, and widths hWGi (�A) are the

mean values of a ten run ensemble. y indicates that, in this wavelength range, a line of Ar VIII

at � = 700:245 �A (in second order) dominates the emission, as is clear from inspection of

images shown by Judge et al. (1998) but this was not given in the line list. This line was

detected in the `blind' decomposition of Section 3.3 (�G = 1400:558�A, IG = 0:030 and

WG = 0:151�A) with correspondingly di�erent measurements for the two lines of S III. This

result illustrates that a priori information (in this case, the line list), must be correct or

erroneous results will occur. Mean standard deviations in hIGi and hWGi are 0:002 and 0:001

respectively.

Ion Order �ref h�Gi hIGi hWGi

S IIIy 2 1400.374 1400.449 0.019 0.406

S IIIy 2 1400.573 1400.648 0.027 0.408

O III 1 1401.157 1401.232 0.692 0.162

S I 1 1401.514 1401.589 0.110 0.145

S IV 1 1402.770 1402.845 2.875 0.164

S IV 1 1404.771 1404.846 0.368 0.195

O IV 1 1404.806 1404.881 0.018 0.411

S III 2 1405.566 1405.641 0.044 0.094

S III 2 1405.643 1405.718 0.108 0.230

O III 2 1405.676 1405.751 0.092 0.002

O III 2 1405.791 1405.874 0.014 0.060

S IV 1 1406.076 1406.151 0.086 0.139

O IV 1 1407.382 1407.457 0.138 0.308

O III 2 1407.701 1407.776 0.091 0.122

O III 2 1407.709 1407.784 0.270 0.207

75



3.4. DISCUSSION

3.4 Discussion

We have presented a heuristic search algorithm for the detection and analysis of spectral

lines, which is free of operator bias and robust against poor or noisy data. Data are �tted

simultaneously, and not sequentially, therefore limiting the propagation of systematic errors

through the procedure. Coding is simple to write and easy to use, needing minimal operator

input. However, the simplicity of the GA used here places limitations on the amount of

information that can be extracted from spectra. Although there is no practical limit to the

number of parameters used in the genetic decomposition, the eÆciency with which the one

point cross-over operator `explores' the solution space decreases as the number of parameters

increases. However, such a problem can be countered simply by using a multiple point cross-

over operator (see discussion in Goldberg 1989). Such adaptations are simple to make in any

GA code.

In cases where data is more poorly sampled or noisier than those examined here, conver-

gence times may become longer than the few minutes or so typical of the examples shown.

It is clear from the CPU times (TCPU ) given in Tables 3.1 and 3.2 that although Ga-GA is

not as `fast' as CURVEFIT we can see that the user must compromise between run time and

the degree of accuracy required since Ga-GA has clearly demonstrated its usefulness in the

presence of quite severe noise. Presumably there is also a trade-o� between poorer sampling

(i.e. fewer points) saving on oating point operations, and noisier data leading to many more

�tting attempts. Monitoring the convergence of the GA in the cases examined here indicates

that it is adept at rapidly �tting the large scale spectral features, and progressively slower

at smaller scales. This cascading nature is central to the operation of a GA, and underpins

its stability in the face of noisy data (the noise being on the smallest scale is �tted last).

Increasing the scale of the computation is straightforward since the generation of each child

is an independent calculation (strictly, the generation of each pair of derived strings), and so

the algorithm lends itself naturally to parallelisation. It is also clear that a GA routine like

Ga-GA4 could form part of a suite of line analysis codes, with the GA o�ering a best initial

estimate of the pro�le for more conventional processing methods which require a `good' initial

guess.

4A version of the Fortran-77 Ga-GA code is given in Appendix A.1.
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Chapter 4

New light on the solution of DEM

inverse problems

This Chapter

Spectroscopic diagnosis of the temperature and density structure of hot optically thin plasmas

from emission line intensities is usually described in two ways. The simplest approach, the `line

ratio' method, uses an observed ratio of emission line intensities to determine a `spectroscopic

mean value' of electron temperature hTei or electron density hnei. The mean value is taken

to be the homogeneous theoretical value of Te or ne which matches that ratio of observed line

intensities. The line ratio method is stable, leading to well de�ned values of hTei or hnei for

each line pair, but in the outer solar atmosphere (a highly inhomogeneous plasma) such mean

values are hard to interpret since each line pair yields di�erent mean parameter values. The

more general `di�erential emission measure' (DEM) method recognises that observed plasmas

are better described by DEM distributions of temperature or density over the observed plasma

volume, and poses the problem in the inverse form of deriving the DEM functions from the

complete line set. It is well known that the DEM function is the solution to an inverse problem

and can be treated as a function of Te, ne, or both. Derivation of DEM functions, while generally

considered to more rigorous, is unstable to noise and errors in spectral and atomic data. This

Chapter highlights work on the DEM inverse problems discussed in the previous chapters and

presents a novel Genetic Algorithm based technique for circumventing the e�ects produced by

systematic errors present in the atomic models.

Knowledge of the densities and temperatures of space plasmas is essential if we are to

understand their most basic structure and transport processes in them. Without this knowl-

edge, almost nothing can be said from data regarding the generation and transport of mass,
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momentum and energy. Thus, since early in the era of space-borne spectroscopy, we have

faced the task of inferring plasma electron densities, ne, and temperatures, Te, for hot solar

and other astrophysical plasmas from optically thin emission line spectra (e.g., Gabriel &

Jordan 1969; Munro et al. 1971; Gabriel & Jordan 1971; Dere & Mason 1981; Doschek 1987;

Mason & Monsignori-Fossi 1994).

A fundamental property of hot solar plasmas is their basic inhomogeneity. This is obvious

from direct images of the Sun's corona and transition region which show a wealth of �ne scale

structure down to the observable limits of resolution (e.g., see the recent book on the solar

corona by Golub & Pasacho� 1997). It is con�rmed by less direct spectroscopic work which

reveals di�ering values of ne; Te for di�erent line ratios (see, e.g., discussions in Doschek 1984

and Doschek 1987). Strong inhomogeneity is expected also from physical considerations (a

particularly interesting perspective, addressing why the plasmas do not appear to be even

more inhomogeneous than already observed, is given by Litwin & Rosner (1993)).

The emergent intensities of spectral lines at each `point' in 2D images of optically thin

plasmas are determined by integrals along the line of sight (i.e. the third dimension) through

plasmas. There are two common approaches to inferring plasma properties from observed

spectral line intensities. Consider the case in which a characteristic temperature of the

electrons in the plasma is desired. The simplest approach, the `line ratio' or `spectroscopic

mean' method, involves �nding the single value of the electron temperature from a theoretical

calculation of the ratio of carefully selected emission lines, that is in agreement with that single

observed ratio. A \spectroscopic mean value" of the temperature hTei is derived for each line

pair. If the plasma were truly isothermal, then the derived spectroscopic mean values for

all line pairs would coincide with the actual plasma temperature, to within observational

and theoretical errors. This approach was applied as early as 1941 to planetary nebulae by

Menzel et al. (1941), and is reviewed by Gabriel & Jordan (1969) and Mason & Monsignori-

Fossi (1994), see also Section 2.2.2.1. The other method is to recast the above mentioned line

integrals into suitable form for `inversion', in which one solves for a function, �(Te), which is a

source term that describes the emissivity distribution of material as a function of temperature

along the line of sight. �(Te) is called the `Di�erential Emission Measure' (DEM) function,

see Section 2.1.1.2. This gives a general characterisation of the distribution of the plasma

with respect to temperature.

The integral equation formalism for temperature sensitive lines was �rst discussed by

Pottasch (1964) and put on a rigorous mathematical basis for arbitrary geometry by Craig
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& Brown (1976). The formulation was later extended to a DEM function �(ne) di�erential

in ne for isothermal plasmas (Almleaky et al. 1989, and references therein). The concept

was also generalised to the bivariate case of �(ne; Te) by Je�eries et al. (1972a, b) although

their de�nition contained an error corrected in the independent formulation by Brown et al.

(1991). Formulation of how this general bivariate case could be cast as an inverse problem

and in principle solved eluded these earlier authors and was �nally established by Hubeny &

Judge (1995) and elaborated by Judge et al. (1997).

Although more general than the line ratio method, it is well known that the DEM for-

mulation is prone to errors in the solution arising from the ill-posed nature of the inverse

operator - i.e. instability of the solution to errors in the spectral and atomic data (Craig &

Brown 1976; Judge et al. 1997). This is intrinsic to the nature of the inverse problem, in

which a continuous distribution function (or discretisation thereof) is sought from a �nite

number of data points and, furthermore, there is signi�cant linear dependence between the

line emissivities (or `kernels') in the integral equations (see Sections 4.1.1 , 4.1.2 and 4.1.3

and discussion in the following chapters of this thesis). There is thus no single mathemat-

ical solution to the DEM problem, and the intrinsic ill-posedness (see Chapter 2) must be

addressed from the outset, essentially by smoothing the desired DEM function so that, in a

loose sense, the number of independent DEM values does not exceed the number of indepen-

dent measurements (see, e.g., Craig & Brown 1986). There are, as well as these fundamental

limitations of the DEM method, practical problems concerning the nature and magnitude of

errors in the theoretical calculation of the intensities of emission lines. For example, Judge

et al. (1995) showed that the �(Te) problem also has large sources of systematic error in

excess of known errors in line intensities, which they suggested are due to the breakdown

of the fundamental assumption of ionisation equilibrium made in formulating the problem,

although radiative transfer e�ects could not be ruled out. In addition Judge et al. (1997)

concluded that systematic errors in the atomic physics, and in the ionisation balance, make

straightforward inversion for �(ne; Te) very diÆcult or intractable.

The bivariate DEM function, �(ne; Te), is the \holy grail" of solar UV spectroscopy but

the diÆculties clearly noted, and demonstrated, in Hubeny & Judge (1995) and Judge et al.

(1997) mean that we are essentially limited, by the need for an element of uniqueness, to

inversions for �(Te) and in the extreme for �(ne) of Almleaky et al. (1989) and Brown et al.

(1991)), or to �(ne; Te) on a very coarse grid.

The `mean value' or `line ratio' approach on the other hand gives well de�ned results

79



which are appealing because they are simple to derive and they can remove, through careful

choice of lines, large sources of uncertainty arising from errors in ionisation balance. However,

they have the serious drawback that the results are not easy to interpret for inhomogeneous

plasmas, di�erent line ratios for example giving di�erent mean densities even for lines peaking

in the same temperature range because of their di�erent detailed sampling of the temperature

distribution (cf. Almleaky et al. 1989 and Brown et al. 1991). It is worth acknowledging that

Brown et al. (1991) found that as the number of ratios used is increased the ratio estimates

asymptotically approach their physcial values.

The exact relationship between the two approaches has never been explored in depth,

although particular situations were discussed by Brown et al. (1991). Motivated by this, by

the advent of new data from the CDS and SUMER instruments on the SOHO spacecraft, and

by the desire to remove the large sources of systematic error that plague inversions of emission

line data (e.g., Judge et al. 1995; Judge et al. 1997), we study the relationship between these

two methods. We show below that there is a precise correspondence between DEM functions

and a suitable complete set of mean spectroscopic densities and/or temperatures in situations

where these can be de�ned.

After establishing this exact relationship between the line ratio and full DEM inversion

techniques we pursue a method using the best features of both methods to improve the

stability of inversions for �(Te), �(ne) and �(ne; Te). In Section 4.2 we demonstrate that such

a `hybrid' method alleviates the conditioning and stability e�ects introduced in Chapter 2

and in Judge et al. (1997). Stated simply, we propose a novel `fusion' of these two basic

techniques, the Ratio Inversion Technique (RIT), that can achieve numerically stable, and

hence more reliable, source functions of the emitting region of the solar plasma. The RIT

algorithm is discussed in Section 4.2.2 while results for several model DEM functions (for

�(Te) and �(ne)) are discussed in Section 4.3. In Section 4.4,to complete our analysis, we

apply the RIT to solar active region spectra obtained by the Solar EUV Rocket Telescope

(SERTS) in 1989 (Thomas & Neupert 1994) to recover a form for �(Te). We compare the

resulting form of �(Te) with those obtained independently by Brickhouse et al. (1995), Landi

& Landini (1997) and Lanzafame et al. (1998).
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4.1. RELATION BETWEEN LINE RATIO AND EMISSION MEASURE ANALYSES

4.1 Relation between line ratio and emission measure analyses

Before commencing with the derivation of the formal relationship between a set of spectro-

scopic mean values from emission line ratios and the emitting plasmas source function (the

DEM functions discussed above) we must re-address, and complete, some of the concepts

introduced in the previous chapter. In particular the details of optically thin line emission at

or near coronal ionisation equilibrium in a highly non-LTE plasma. We begin by considering

the total power Pi radiated by a particular spectral line labelled i. So, for an optically thin

plasma occupying a volume V is

Pi =

Z Z Z
V
h�iAinu(i)dV erg s�1 (4.1)

where h is Planck's constant, �i is the frequency of the line, Ai (s
�1) is the Einstein A-

coeÆcient, and nu(i) (cm
�3) is the population density of the upper level u(i). Following

standard practice, we de�ne a line emission coeÆcient, Ki(ne(r); Te(r)), normalised to the

electron density squared as

Ki(ne(r); Te(r)) =
h�i
4�

nu(i)Ai

n2e
erg cm3 sr�1 s�1; (4.2)

then equation (4.1) becomes

Pi = 4�

Z
V
Ki(ne(r); Te(r))n

2
e(r) d

3r erg s�1: (4.3)

We remind the reader that to write the equation in this form we have made several im-

plicit assumptions, these are assumptions are stated in Chapter 2. We have observed that

Ki(ne(r); Te(r)) is almost independent of density ne for collisionally excited permitted tran-

sitions decaying to the ground state of a given ion.

Equation (4.3), with full dependence on ne and Te, can be formulated in terms of a

function of electron density and temperature. This function was identi�ed above as the

bivariate DEM function of ne and Te, namely �(ne; Te). If we follow the procedure used to

formulate equation (2.68) for the line intensity Ii and not the total radiated power Pi, we

have Ii = Pi=(4�S), where S is the area of the projected volume V and

Ii =

Z
Te

Z
ne
Ki(ne; Te)�(ne; Te) dnedTe erg cm�2 sr�1 s�1 : (4.4)

Again, we de�ne the di�erential emission measure in ne, �(ne), as the reciprocal density-

gradient-weighted mean square electron density and, correspondingly the di�erential emission
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measure in Te, �(Te) as the reciprocal temperature-gradient-weighted mean square electron

density, obtained from equation (2.67), as follows:

�(ne) =

Z
Te
�(ne; Te)dTe cm�2 (4.5)

�(Te) =

Z
ne
�(ne; Te)dne cm�5 K�1 (4.6)

As discussed previously, in the context of inverse methodology, these moments are the

best way to interpret the raw observed data to help determine the energy balance (Jordan

et al. 1987; GriÆths & Jordan 1998) or determining whether the data are compatible with an

atmosphere at constant pressure (see Craig & Brown 1976; Judge et al. 1997). Formulation

of the relationship between these functions and the `mean' observed quantities is therefore of

bene�t to the solar physics community.

4.1.1 Relationship between �(Te) and hTei

Consider an optically thin emission line labelled i for which Ki(ne; Te) is a weak function of

density, such as a resonance line. Ki(ne; Te) can then be replaced by Ki(Te) (as discussed in

the previous chapter). So, we have the spectral line intensity (in the appropriate units)

Ii =

Z
Te
Ki(Te) �(Te)dTe : (4.7)

For two such lines i; j, the ratio of the two line intensities is

Rij =
Ii
Ij

=

R
Te
Ki(Te) �(Te) dTeR

Te
Kj(Te) �(Te) dTe

; (4.8)

and if the emission coeÆcients are di�erent, then the ratio depends on Te. If the plasma is

homogeneous in temperature, i.e. isothermal, we can express the �(Te) as a Dirac delta func-

tion �(Te) = �0 Æ(Te � hTei) such that, on substituting this expression into to equation (4.8)

and integrating over the whole temperature domain, we have

Rij =
�0Ki(hTei)

�0Kj(hTei)
(4.9)

which is trivially reduced (on dividing throughout by �0) to express Rij in terms of the `mean'

spectroscopic temperature, hTeiij . So again, for our particular line pair (i; j) we have

Rij =
Ki(hTei)

Kj(hTei)
= Sij(hTeiij) (4.10)

where Sij(Te) =
Ki(Te)
Kj(Te)

is assumed to be a monotonic, bijective (invertible) function which

has a unique inverse on the temperature domain considered when we restrict our study to
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resonance lines, i.e. di�erent Te and no dependence on ne, only (see, e.g., �gure 2.9). For

these conditions the relationship is almost always satis�ed. Therefore, on inspection, the

relation between hTeiij and the observed line ratios Rij is given by

hTeiij = S�1ij (Rij) : (4.11)

To formulate an expression for �(Te) in terms of the `mean' spectroscopic temperatures we

must return to equation (4.7). On dividing through equation (4.7) by any other line intensity

Iobsj(i), (i 6= j), known to depend di�erently on Te from line i (hence the notation j(i)), we

obtain

R�
i;j(i) =

Ii
Iobsj(i)

=

Z
Te
K 0
i(Te) �(Te) dTe (4.12)

with K 0
i(Te) =

Ki(Te)

Iobs
j(i)

. This expression thus gives the ratio of the theoretical intensity for line

i to the observed intensity of line j(i). At this stage Ii, and hence R�
i;j(i), are not known

quantities. If we set R�
i;j(i) = Ri;j, the observed line ratio, then equation (4.12) becomes an

integral equation with known LHS, and known kernel K 0
i(Te), in which �(Te) is the quantity

to be determined. Consider forming n ratios of the intensities of a set of emission lines to

form a vector R:

R = (R1;j(1); R2;j(2); :::; Rn;j(n)) (4.13)

If we discretise equation (4.12) with respect to Te, then the equation becomes a matrix

equation of the form:

R = K 0 �: (4.14)

The rows ofK 0 are simply rows of kernels of equation (4.7) divided by observed line intensities.

This has the (poorly conditioned, see Craig & Brown 1986) analytical solution:

� = K 0�1R: (4.15)

This equation for n ratios permits � to be determined at up to n discrete temperatures. The

above illustrates that the equations for line ratios can be simply re-written in a standard

form, which can thus be used in numerical algorithms and will be discussed below. But we

have not yet written the formal equivalence between the �(Te) functions and a set of line

ratios, and their corresponding mean derived temperatures. From the above, this is clearly

just

� = K 0�1fSij(hTeiij)g; (4.16)
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where fSij(hTeiij)g denotes the array of line ratios indexed by i. This expression relates the

DEM to the set of spectroscopically derived temperatures through the inverse of the matrix

K 0.

4.1.2 Relationship between �(ne) and hnei

Due to the inhomogeneous nature of the solar atmosphere it is clear that the constituent

plasma has no unique ne. We can, never the less, de�ne a spectroscopic `mean' electron

density for the ratio of lines displaying some degree of density sensitivity. As stated previously

the ideal ratio being that of a resonance (essentially no ne functional dependence) and an

intersystem (with functional behaviour with ne categorised earlier) line of the same ionisation

stage of a particular atom.

To obtain such a `mean' estimate of ne we must consider the optically thin plasma to be

isothermal, with Te = T0, meaning that Ki(ne; Te = T0) reduces to Ki(ne). Then, the total

emitted line intensity of a line labelled i is given by

Ii =

Z
ne
Ki(ne) �(ne) dne : (4.17)

Then for a density sensitive line pair (i; j) we see that the ratio Rij is given by (cf. equa-

tion (4.8))

Rij =
Ii
Ij

=

R
ne
Ki(ne) �(Te) dneR

ne
Kj(ne) �(Te) dne

: (4.18)

As above, we now seek the `mean' electron density hnei of a homogeneous plasma that

yields the same line ratio as the observed inhomogeneous one. This is performed by de�ning

�(ne) = �0 Æ(ne�hnei) such that, on substituting into equation (4.18) and dividing throughout

by �0 we have

Rij =
Ki(hnei)

Kj(hnei)
: (4.19)

By direct analogy to the steps producing equations (4.8) through (4.16) we can construct

a relationship for the discretised di�erential emission measure in ne, �, in terms of a set of

`mean' spectroscopic densities hneiij , and the operator Gij(ne) =
Ki(ne)
Kj(ne)

. For purposes of

writing expressions formally equivalent to those above, this operator must now be assumed

to be unique (monotonic, bijective). Thus,

� = K 0�1fG�1
ij (hneiij)g; (4.20)

where K 0�1 is to be understood as the equivalent (but clearly not identical) matrix to that

in equation (4.16). While this expression assumes that the inverse operator G�1
ij (hneiij) has
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a unique solution, notice that a numerical solution for �, analogous to equation (4.15), makes

no such assumption. In fact, it removes ambiguities that can arise from the non-unique

inverse operator G�1
ij (hneiij) for certain line ratios in important ions. This is because, in a

numerical implementation, this operation is not performed. The vector element is instead set

to the observed ratio Ri;j(i). An example of non-unique inverse operators occurs for

certain ratios of intersystem lines in the boron isoelectronic sequence (see, e.g.,

Brage et al. 1996, Fig. 2).

4.1.3 Relationship between �(ne; Te) and hnei, hTei pairs

In the general case we wish to obtain information about the form of the bivariate di�er-

ential emission measure, �(ne; Te) from a set of `mean' spectroscopic densities, hnei, and

temperatures, hTei, discussed above. These `mean' values are usually derived individually, as

described earlier, by looking at line pairs that are mostly sensitive to Te, or ne, but not both.

Following the method of the previous sections, we seek mean parameters hnei and hTei of

the homogeneous plasma that will yield the same line ratio as the observed inhomogeneous

plasma. Some care must be taken here, as can be seen by, following earlier sections, assuming

that the bivariate DEM function can be approximated as separable by �(ne; Te) = �0Æ(Te �

hTei)Æ(ne�hnei). Using equation (4.4) to form the line ratio of two lines with labels i and j,

(i 6= j):

Rij =
Ii
Ij

=

R
Te

R
ne
Ki(ne; Te)�(ne; Te) dnedTeR

Te

R
ne
Kj(ne; Te)�(ne; Te) dnedTe

(4.21)

On substitution of �(ne; Te) given above into equation (4.21) and performing the double

integral we obtain

Rij =
Ki(hnei; hTei)

Kj(hnei; hTei)
=Mij(hnei; hTei) (4.22)

To try to determine hnei and hTei does not make sense, since there is just one equation,

but two unknowns, hnei and hTei. Thus it is clear that another equation is needed. One

possible solution is to assume that hTei = T 0
ij where T

0
ij is the coronal ionisation equilibrium

temperature for the particular ion(s) under study. This is in fact a common assumption

made for solar corona lines (e.g., Mason 1991). If this assumption (or something else) is

made, then for a set of emission lines of temperature and density sensitivity, we see that the

pair (hnei; hTei) can be determined provided there exists an inverse function M�1
ij , i.e.

(hneiij ; T
0
ij) =M�1

ij (Rij) (4.23)
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Repeating the steps taken to formulate equation (4.12) we divide through equation (4.4) by

another line intensity, Ij(i), again displaying the required functional (either density sensitive

or temperature sensitive) behaviour to produce:

Ri;j(i) =
Ii
Ij(i)

=

Z
Te

Z
ne
K 0
i(ne; Te)�(ne; Te) dnedTe (4.24)

discretising this with respect to ne and Te we have the following

Ri;j(i) =
mX
l=1

pX
q=1

�(nq; Tl)K
0
i(nq; Tl)�ne�Te (4.25)

Performing an operation described in Hubeny & Judge (1995) we re-index from l = 1; : : : ;m

and q = 1; : : : ; p to � = 1; : : : ;mp so that equation (4.25) may be recast in a standard matrix

form, where the �ne, �Te terms are combined to form a measure of the redimensioned

space, namely �(Ne
N

Te) and absorbed into the redimensioned form ofK 0(ne; Te). Therefore

equation (4.25) becomes:

Ri;j(i) =
mnX
�=1

U�K
0
i� (4.26)

Where U is the 1 dimensional transform of the 2 dimensional function �. This has an

analytical solution of the form (cf. equations (4.16) and (4.20))

U = K 0�1fM�1
ij (hneiij ; T

0
ij)g: (4.27)

Again K 0�1 is equivalent, but not equal to that of equation (4.16). Also, the comments

above on the uniqueness of inverse operators in the � problem apply equally to the bivariate

problem.

4.2 Ratio inversion solutions for DEM functions

The relationships discussed in the previous sections have alluded to a `clean' relationship

between line ratios and distributions of the fundamental plasma quantities (i.e. the DEM

functions). In the following discussion we will show that these relationships can be taken one

step further using a new, hybrid algorithm to obtain the discretised DEM functions using a

line ratio-like inversion method. Such an approach has several advantages over either of the

two methods previously discussed. The principal disadvantages of both approaches are, as

discussed above:

1. Using the individual line ratio approach on its own is not enough to obtain meaningful

reliable distributions of the plasma diagnostic quantities.

86



4.2. RATIO INVERSION SOLUTIONS FOR DEM FUNCTIONS

2. The full solution of the ill-posed inverse problem to obtain the DEM functions is very

much inuenced by theoretical uncertainties in the atomic factors used to formulate the

problem and not only observational errors.

It is important to stress that the only standard inversion carried out that considered such

theoretical uncertainties was Judge et al. (1997). Also, the systematic nature of these uncer-

tainties require that a method like the RIT is needed.

The diÆculty with `fusing' these two concepts to produce a hybrid algorithm is of a

purely conceptual nature. Standard practice when solving an inverse problem is, as discussed

in Chapter 2, a matter of constructing a linear matrix equation. Not only this but we are

required to use some form of regularising mechanism to constrain the smoothness of the

recovered solution. Mathematically speaking, we are attempting to solve the ratio of two

integral equations for a univariate DEM function, f(se), of the observed diagnostic quantity

se (ne or Te), each given by (cf. equations (4.7) and (4.17))

Ii =

Z
se
Ki(se)f(se)dse : (4.28)

Recalling that this equation can be expressed as a linear matrix equation g = K f and that

the errors ÆK in the line emissivities can be transported, via the errors in line intensities

Æg, to fractional errors and numerical instabilities in the recovered solution (assuming that

f = K�1g exists) of the form, cf. equation (2.28), for an arbitrary norm

kÆfk

kfk
�

 
CK

1� C 0
K

!
kÆgk

kgk
+

 
C 0
K

1� C 0
K

!
(4.29)

where CK and C 0
K are the condition number and adjusted condition number of matrix K as

de�ned in Chapter 2. So, for a set of N line ratios f Rij g we have for line pairs i; j (and

i 6= j) with respective integrated line intensities Ii and Ij

Rij =
Ii
Ij

=

R
se
Ki(se)f(se) dseR

se
Kj(se)f(se) dse

: (4.30)

From this relationship we can envision why the line ratio technique has proven so popular

as the main diagnostic technique in space borne ultraviolet spectroscopy; the ratio of like

atomic terms negates systematic errors in those terms. This is one of the points this work

will exploit. Similarly, we use the rigour1 of obtaining the DEM functions as eloquently and

pointedly stated by Pottasch (1964) and later by Craig & Brown (1976).

1Of course, this is rigour in the mathematical sense; the DEM functions are the only true diagnostic of the

emitting solar plasma from such an inverse formalism.
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Recently, Fludra & Schmelz (1995) employed a line-ratio approach, loosely comparable to

the RIT, to infer coronal atomic abundances of the aring coronal plasma. Their discussion

focused on the analysis of Soft X-ray (10 - 100 keV) lines obtained by the Solar Maximum

Mission (SMM) Flat Crystal Spectrometer (FCS; Acton et al. 1980) and produced, as a by-

-product, DEM functions �(Te) for the high temperature (6 � log10 Te � 8) aring plasma.

The analysis Fludra & Schmelz (1995) presented however, did not make any e�ort to com-

pensate for the potentially damaging theoretical atomic uncertainties discussed above. Even

though the community was well aware of the diÆculties of constructing reliable atomic tran-

sition models it was never properly addressed in the literature until 1997 with the work of

Judge et al. (1997).

In an ideal world, one where the solution to equation (4.30) is a smooth positive de�nite

function of se, we would seek the least squares solution (cf. Section 2.1) of

X2(Robs; Rcalc) =
NX
l=1

0B@
�
Robs
l �Rcalc

l

�2
�2lth + �2lobs

1CA (4.31)

where l is the label of a particular line pair, f Robs g is the set of observed optically thin line

ratios with errors �lobs , theoretical estimates of the errors in the relevant atomic parameters

(in Ki(se) and Kj(se)) given by �lth (discussed below) and the set of f Rcalc g are calculated

using equation (4.30). However, as is the case with all ill-posed inverse problems, we must

seek a regularised solution for f(se) which minimises (adopting X, above, to be a form of the

statistical �2 measure between Robs and Rcalc)

�2 = X2(Robs; Rcalc) + � �(f(se)) (4.32)

where � and �(f(se)) are the smoothing parameter and smoothing functional respectively.

Clearly, where equation (4.32) is non-linear in f(se), from the X2(Robs; Rcalc) term, the linear

case solving for a set of line intensities requires that we solve equation (2.46). As we have

previously discussed the choice of �(f(se)) will reect the nature of the solution space, for

example considering f(se) to be smooth to the nth polynomial order such that

�(f(se)) =

Z
se

????dnf(se)dsne

????2 dse (4.33)

where f(se) will clearly be a discretised function and we will be required to calculate equa-

tion (4.33) as a forward �nite-di�erence estimate of the actual integral.

The form of equations (4.31) and (4.32) mean that we cannot use standard Tichonov

regularisation or SVD methods, but that we must adopt a new non-linear approach. To
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this end we have chosen a Genetic Algorithm (GA) because of its numerical robustness

(Goldberg 1989) and the ease with which non-linear calculations like equation (4.32) can

be encoded (Charbonneau 1995). The terminology and basic mechanical principles of GAs

were discussed in the previous chapter. For the calculations presented here we will specify

the se mesh over which the integrals are discretised and use di�erent smoothing functionals

(over a wide range values for �) to analyse the numerical stability of the solutions obtained.

Indeed we show that, for a series of test DEM `source' functions, the results are conclusive

that this method, the Ratio Inversion Technique (RIT), is not inuenced greatly by large

systematic errors in the atomic rate coeÆcients that could make the results of standard

intensity inversions highly ambiguous. That is, the RIT is insensitive to errors that

are likely to dominate standard inversion procedures and therefore provides a

new means of obtaining less ambiguous results about the emitting optically thin

region of the solar atmosphere under examination.

4.2.1 Calculation of kernel errors

To calculate meaningful values of �lth (for each line pair l) we have performed a Monte Carlo

simulation to get a distribution of twenty perturbed line emissivities for each transition. Per-

turbed, in the sense that their component atomic terms (rates and coeÆcients) are randomly

perturbed about their \accepted" values. The amounts by which these coeÆcients and rates

are perturbed are relevant to �gures put forward in the literature, speci�cally in Judge et al.

(1995) and Judge et al. (1997). Recalling from Section 2.2 that we can express the emissivity

of the optically thin emission line i (in the simplest sense) as

Ki(se) � � � Xi(se) � Yi(se) (4.34)

where � is a constant, Xi(se) = nion
nel

is the conglomerate of the bound-free (b-f) terms

and Yi(se) =
nu(i)
nion

of the bound-bound (b-b) terms of the transition as functions of se

respectively2. So, if these quantities have associated errors ÆXi and ÆYi then the fractional

error in the line emissivity can be expressed as�
ÆKi

Ki

�2
=

�
ÆXi
Xi

�2
+

�
ÆYi
Yi

�2
: (4.35)

The calculations presented in this chapter have associated standard (1�) deviations in the

fractional errors of the order (cf. Judge et al. 1997) :
2Of course these terms have been de�ned previously. The de�nition of Xi remains unchanged, but Yi was

de�ned as the elemental abundance relative to hydrogen.
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- For the bound-bound processes we adopt a value of 3%. This of course ensures, by de�ni-

tion, that 32% of the random realisations will have errors in excess of 3%.

- We have chosen to use logarithmic (base 10; log-normal distributed) deviations of �0:1

about the mean value for bound-free processes. This value is clearly an estimate because

the amplitude of errors in such (b-f) processes are not well known, P. G. Judge - Private

Communication.

These values reect possible lower magnitude limits on the b-b and b-f terms. So, the e�ects

on line emissivity Ki(se) are conservatively estimated to lie between 10% and 125%. Of

course, there are other possible atomic and external mechanisms that can further increase

these estimates but discussion of these is left until Chapter 6.

The actual process of perturbing the atomic rates/coeÆcients is carried out by routines

of the HAO-Diaper atomic calculation package. To obtain actual estimates of �lth we have to

obtain a distribution of line emissivities for each line, each with di�erent random realisations

of the constituent atomic factors. We obtain twenty such realisations for each line and use

the following recipe to construct values of �lth for the line pair l = (i; j).

1. Calculate the integrated line intensities for each line and each perturbed line emissivity;

yielding a distribution of Q = 20 line intensities. It should be noted that we use a constant

`at' f0(se) to calculate these intensities but such an approximation is not taken lightly and

is made primarily to have a simple and uniform error estimate for every line no matter at

what temperature it is formed at. So, returning to the problem in hand we have calculated

20 randomly perturbed values I 0i (cf. equation (4.28))

I 0i =

Z
se
Ki(se)f0(se)dse : (4.36)

2. Repeat the previous calculation for every possible line until distributions of line intensities

Ii = f I1i ; : : : ; I
Q
i g are formed.

3. Use the distributions of step 2 to form distributions for the various emission line pairs

Rl = f R1
l ; : : : ; R

Q
l g. Note that the individual values of Rj

l (1 � j � Q) are calculated

with the denominator and numerator line intensities are taken from the same model,

model j.

4. Given now that we have a random distributions for the same `at' f(se) function it is

reasonable assume that the standard deviations (1�) of the distributions approximate the

values of �lth well.
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4.2.2 Speci�cs of the Ratio Inversion Technique (RIT)

As noted above we are making use of the adaptability of a Genetic Algorithm (GA) to

perform this non-linear inversion. The GA approach allows a very high degree of control to

be placed in the hands of the user (i.e. us) and a GA e�ectively allows us to specify the

number of generations (10,000; signi�cantly more than the examples presented in Chapter 3)

over which the solution will evolve over; the �nal solution being that which best optimises

equation (4.32). Also, the GA method we use implements a genetic precedence operator

known as elitism, its function being that the solution best satisfying equation (4.32) (at the

end of each generation) is retained for in the population of possible solutions for breeding the

next and preceding generations.

Each individual in the population, composed of 100 individuals, is made up of M = 30

`parameters' with the ith parameter evaluating the DEM function at the ith point in se space,

i.e. f(sei). RIT does not couple these parameters (there is no interpolation between them)

and choice ofM = 30 as the number of discretisation points is entirely arbitrary. This number

can be increased but care must be exercised because, as M increases the line emissivities get

`closer' to the continuous integral operators3 they represent and increase the possibility of

numerical instability. The choice of N , the number of line ratio pairs used in the analysis

is arbitrary, but we note that signi�cant increase in N above 30 say, may also produce an

increase in numerical instability of the recovered solution. This is particularly true if using

an increased number of ratio pairs from one particular ionic stage since then the `linear

dependence' of the operator to be inverted is increased considerably. This was discussed in

Chapter 2 and shall be met again, in greater depth, in Chapter 5.

The action of the RIT is best described as the following :

1. Generate 100 random solutions as an initial population, calculate the resulting �2 of

equation (4.32) for each individual.

2. Choose a subset according to their values of �2, and breed them to produce a new popu-

lation.

3. Calculate the value of �2 for each individual in the new population.

4. Replace the old population with the new one.

3Not only do they `approach' the actual form of the integral operators, a patently poor property, but they

reduce the e�ectiveness of the genetic operators; this is discussed as earlier, see e.g, Chapter 3.
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5. Check that the number of generations has reached its maximum value; if not return to

step 2.

4.3 Results

In this section we highlight the operation of the RIT algorithm on several test DEM functions

and compare the results with standard (linear) inversions. Section 4.3.1 discusses the analysis

of the emission measure di�erential in temperature, �(Te), to all intents and purposes the

singly most important diagnostic quantity in terms of inverse modelling the solar atmosphere.

Section 4.3.2 discusses application of the RIT to emission measure di�erential in electron

density, �(ne) in a similar vain to that of �(Te) especially in that the performance of both

`avours' of ratio inversion will be compared to those obtained using standard intensity

inversions4.

It is important at this stage to note that the resultant recovered (discretised) function

f(se) from optimising equation (4.32) (through equation (4.31)) does not allow us to �x the

amplitude of f(se). Simply because, when returned it will always be a multiple C of its true

value since

Rcalc =

R
se
Ki(se) (Cf(se)) dseR

se
Kj(se) (Cf(se)) dse

(4.37)

will always hold. So, to resolve this problem we must use the recovered solution f(se) to

re-calculate the M (< 2N) line intensities, Icalc. These \new" intensities, when compared to

the observed intensities, yield the scaling factor S(� C) given by

S =
1

M

0@ MX
j=1

Ijobs
Ijcalc

1A : (4.38)

In practice, we need only �x a single line intensity in the calculation to �x the absolute

magnitude of f(se) but, in the presence of noise, this leads to an element of bias in the

function scaling. This possible source of bias is because any particular line intensity is only

`sensitive' over a short span of the whole se domain - from the se dependence of the line

emissivity - the concept of `emissivity coverage' is discussed in greater detail in Chapter 5.

Thus, equation (4.38) yields an unbiased scaling factor for f(se) by e�ectively averaging out

the scaling over the entire se domain.

As is clear from the discussion of Section 2.1, knowledge of an optimal value � for the

inversion | in other words one which best reproduces the data (the \X2" term) | but with
4The intensity inversions described here will be performed using a Tichonov regularisation routine with the

same polynomial order of smoothing as used by the RIT to ensure a fair comparison.
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a suÆciently smooth function f(se) is important. For the standard Tichonov inversions it is

simple to estimate a value for �

� �
tr(KT K)

tr(H)
(4.39)

where K and H are the kernel and smoothing matrices respectively. How to obtain such

an optimal value of � is not so clear when using the RIT because of the non-linearity of

the operator and as in the application of the scaling function above we must address this

diÆculty a posteriori. That is, we must obtain solutions that minimise equation (4.32) over

a wide range of �. This is performed by extending the estimation method of linear inversions

(cf. �gure 2.3) and considering a reformulation of equation (4.32)

�2 = X2 + �D2 (4.40)

where D is the evaluation of the smoothing operator. The simplest way to consider this is

graphically, i.e. we plot � versus D2 versus �2 - the vector v = (�;D2; �2). As an extension to

the standard linear inversion case the best solution, that not only satisfying equation (4.32)

but having a smooth functional form is given by

�opt = min
�
f
q
�2 + �2 +D2g = min

�
kvk2 (4.41)

where the Euclidean norm k � k2 is as previously de�ned.

It is important to stress at this point that, for the test model f(se) functions considered,

we are taking a `forward-backward' approach. That is, for a speci�c model f(se) function,

we perform the following steps

Forward - For the series of lines from which we will eventually construct line ratios we must

calculate, for a speci�c model f(se), integrated line intensities (equation (4.28)). We then

randomly perturb these line intensities wiht a 1� error of 15%. These intensities are then

used to construct the line ratios used in the RIT, in this case Robs
l for line pair l = (i; j).

Backward - Taking these values for Robs
l , their errors �lobs and the values of �lth , calculated

as described in Section 4.2.1, we then seek to optimise equation (4.32) for speci�c values

of � and smoothing functional �(f(se)).

As a fair test of the RIT we perform the backward `leg' twice, once using the emissivities

used to calculate the intensities and the other using perturbed line emissivities. The point

being that, if the errors are truly systematic then the ratio analysis should alleviate their

numerical e�ect on the recovered solution. These are hereafter referred to as standard and
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perturbed inversions. Note that the perturbed inversions are all carried out with the same set

of perturbed emissivities which is randomly chosen from the set of 20 discussed above.

Using these we will see how well the RIT `�lters out' systematic errors in the line emis-

sivities which cause the catastrophic instabilities for standard intensity inversions found by

Judge et al. (1997). The following subsections detail the results of these tests for �(Te)

(Section 4.3.1) and �(ne) inversions (Section 4.3.2) and, for `completeness', Section 4.3.3

demonstrates the usefulness of implementing a di�erent, more generalised smoothing (or

regularisation) functional.

4.3.1 RIT test results for �(Te)

In this section we test the properties of the Ratio Inversion Technique (RIT) against those of

a `standard' inversion method. That is, we will exploit the error �ltering capabilities of the

line-ratio technique of obtaining plasma diagnostic quantities and numerical instability of a

GA optimisation approach in the face of large systematic errors in the line emissivities like

those discussed in Section 2.2.

The model �(Te) functions we consider here are contrived to encompass the various classes

of �(Te) function likely to occur in the solar atmosphere and not as having any speci�c physical

plasma interpretation. We study two such functions here: model 1 is strictly continuous over

the temperature domain (4:5 � log10 Te � 6:5) and is parabolic in form whereas model 2 is a

`Top-Hat' function with discontinuities in Te. The two test models are shown in �gure 4.1,

recall that these functions are discretised over 30 temperature points.

Table 4.1 identi�es the line ratio pairs l used in these calculations along with their wave-

lengths (� �A) and their measure of the theoretical uncertainty in the line ratio �l (�lth as a

fraction of Rlth for a at model �(Te) function.) It is clear that, as anticipated, the line ratio

pairs with each line belonging to a common ionisation stage of the atom having consider-

ably lower values, in general, than others being typically in the range of �l � 2 � 10%. The

`Uncorrelated' line ratio pairs have typical values upward of 20%. Note, the unusually large

error in the ratios of lines within the Lithium like (Li-like, to use the notation of Chapter 2)

ion C IV. Figure 4.2 illustrates the discrepancy between two di�erent atomic models through

the ionisation balance of multiply ionised carbon (C II - C IV) as a function of Te.

As stated in the previous section the solutions are evolved over a �xed number of gener-

ations (10,000) over a wide range of values for � and for di�erent orders n of smoothing or

regularisation (n = 1 or 2 for these simple test cases). These tests allow analysis of the RIT in
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Figure 4.1: Plot of the two test model forms of �(Te). Model 1 (dashed line) is a continuous

function whereas model 2 (solid line) has two discontinuities in Te. These two model functions

display all the major characteristics that we may see in real inferred �(Te) functions of the

solar atmosphere.
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Figure 4.2: The ionisation fractions of two di�erent atomic models for Carbon ions C II

through C VI, (top) a standard unperturbed model, and (bottom) a model where rate coef-

�cients have been subject to random perturbations. The e�ect of the perturbation is most

clearly seen in `Li- like' C IV ion. The horizontal scale is log10 Te.
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Table 4.1: Details of the line pairs used in the RIT runs on �(Te) presented in this chapter.

For each ratio pair l = (i; j) of Rij the numerator, i, (N) and denominator, j, (D) lines are

indicated, along with the ionic stage to which they belong and their wavelength (� �A). Also

quoted is the measure of uncertainty �l (i.e. �lth as a fraction of the theoretical line ratio Rlth

for a at model DEM) from the distribution of 20 perturbed line emissivities. Ratio pairs

1 through 22 are known here as `Correlated' ratios since they have errors in b-b rates only

whereas pairs 23 through 30 are `Uncorrelated' and include errors in the b-f rates also.

# IonN �N IonD �D �l # IonN �N IonD �D �l

1 C IV 1548:18 C IV 312:420 0:1482 2 C III 977:020 C III 1175:26 0:0472

3 Mg IX 706:060 Mg IX 368:070 0:0397 4 Mg IX 706:060 Mg IX 445:980 0:0273

5 Ne VII 895:175 Ne VII 465:220 0:0550 6 Ne VII 895:175 Ne VII 562:993 0:0194

7 Ne VI 562:711 Ne VI 999:630 0:0525 8 Ne VI 562:711 Ne VI 454:072 0:0566

9 Si III 1206:49 Si III 1301:14 0:0671 10 N III 991:502 N III 772:385 0:0299

11 O VI 1031:91 O VI 150:089 0:0966 12 O V 1218:34 O V 629:732 0:0405

13 O V 1218:34 O V 761:128 0:0352 14 O IV 790:112 O IV 1401:15 0:0405

15 O IV 790:112 O IV 624:618 0:0417 16 O III 833:715 O III 1666:14 0:0493

17 Si XI 582:886 Si XI 303:582 0:0540 18 Si X 621:079 Si X 287:092 0:0480

19 Si IX 692:731 Si IX 344:951 0:0263 20 Fe XV 419:552 Fe XV 396:893 0:0430

21 Fe XV 419:552 Fe XV 281:342 0:0757 22 Fe XIV 447:329 Fe XIV 334:172 0:0217

23 C IV 1548:18 C III 977:020 0:0775 24 C III 977:020 C II 1335:66 0:3115

25 Mg X 609:793 Mg IX 368:070 0:1991 26 Si III 1206:49 Si IV 1393:75 0:1563

27 N V 1238:82 O V 629:732 0:1808 28 O VI 1031:91 O V 629:732 0:1236

29 Fe XV 171:839 Fe XV 419:552 0:0708 30 O V 629:732 O IV 1401:15 0:1061
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a global way. In other words, we exhibit the results by plotting the vector v (= (�;D2; �2))

discussed above to help identify the optimal value of � (�opt) which, will in turn be used

for comparison of the recovered solution with that obtained using a standard Tichonov in-

version. Figures 4.3 through 4.6 show these global results for the two models with �rst and

second order smoothing for standard (top of plot) and perturbed (bottom of plot) inversions

respectively.

Given the structure of the global results (shown in �gures 4.3 through 4.6) the action of the

inversion's optimisation process is clear; increased smoothing does create a smooth function,

but one that does not necessarily enhance the recovery of the ratio pairs. Some details of

individual solutions are shown in �gures 4.7 through 4.10 where we can clearly observe the

important role that � plays in the optimisation. This series of �gures demonstrates, for a

range of smoothing parameters, the relationship between the recovered solution (solid line)

of the respective model (dashed line) and the values of Rcalc at the end of the RIT run. The

right hand side of �gures 4.7 through 4.10 show the behaviour of the ratio Robs

Rcalc
for all the line

ratio pairs, with the `Correlated' ratios (b-b errors only; #: 1! 22) and the `Uncorrelated'

ratios (includes b-f errors also; #: 23 ! 30) indicated by � and � respectively. Clearly,

looking at these �gures in general we notice that when � is small relative to X and D (� 1)

the solution is under-constrained and is highly oscillatory and recovers the values of Robs to

within a few tenths of a percent. However, if � is large relative to X and D (� 1) we see that

the solution is over-constrained (and over-smoothed) and is detrimental to the recovery of

the observed line ratios since the recovered �(Te) function no longer adequately `�ts' the data

through the `folding' of the emissivities. Similarly we observe that in the majority cases it is

the uncorrelated ratios that are least well reproduced. This is evidence that equation (4.32)

is a true �2 estimate since we would expect that the quantities with the highest uncertainties

�lth will be given least `weight' in the calculation and hence, be most poorly recovered. This

is all highly analogous to the process of choosing a `cut-o�' point, in a inversion using singular

value decomposition, that suppresses the eigenfunctions corresponding to small eigenvalues

that was discussed in Section 2.1.3.1.

Using the values of the optimal smoothing parameter (�opt) identi�ed in �gure 4.3 to

�gure 4.10 we proceed by comparing the RIT with a standard Tichonov inversion for line

intensities5. These values are collated in Table 4.2 for each test model where we have made use

5Only the 43 line intensities used to form the 30 line ratio values are used in this calculation. These lines

can clearly be identi�ed from Table 4.1.
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Figure 4.3: The global results of the RIT test on model 1 using a �rst order (n = 1)

smoothing functional are best presented in this way. On plotting smoothing parameter �

versus the `roughness' of the solution, given above as D2 see equation (4.33) versus �2 calcu-

lated through equation (4.32) we are able to identify the value of � that optimises the recovery

of Robs with a reasonably smooth function. This value (�opt) is determined by �nding the

point v = (�;D2; �2) indicated by � on the upper curve closest to the origin 0, see equa-

tion (4.41). In this case �opt = 0:1 when using standard and perturbed emissivities yielding

values for �2 of 1:017 and 0:994 respectively.
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Figure 4.4: The global results of the RIT test on model 1 using a second order (n = 2)

smoothing functional are presented here with quantities as described in �gure 4.3. In the

upper plot, for standard emissivities, �opt has a value of 0:5 which has an associated �2 of

0:341. Likewise, the lower plot, for perturbed emissivities, �opt has a value of 0:1 which has

an associated �2 of 0:217. Again, �opt is indicated by � on the upper curve.
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Figure 4.5: The global results of the RIT test on model 2 using a �rst order (n = 1)

smoothing functional are presented here with quantities as described in �gure 4.3. In the

upper plot, for standard emissivities, �opt has a value of 1:0 which has an associated �2 of

34:64. Likewise, the lower plot, for perturbed emissivities, �opt has a value of 0:5 which has an

associated �2 of 19:75. It is clear that the �2 calculation is dominated by the discontinuities

in model 2 through the large values of D2 associated with �rst order smoothing. Again, �opt

is indicated by � on the upper curve.
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Figure 4.6: The global results of the RIT test on model 2 using a second order (n = 2)

smoothing functional are presented here with quantities as described in �gure 4.3. In the

upper plot, for standard emissivities, �opt has a value of 0:05 which has an associated �2 of

0:597. Likewise, the lower plot, for perturbed emissivities, �opt has a value of 0:1 which has

an associated �2 of 1:346. Again, �opt is indicated by � on the upper curve.
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Figure 4.7: Plots showing details of single RIT runs (used to create the upper portion of

�gure 4.3) for test model 1 and a range of di�erent smoothing parameters � and a �rst

order smoothing functional. The left hand plots show the solution returned by the RIT at

the end of its 10,000 generation run (solid line) and the model (dashed line) for standard

emissivities. The right hand plots demonstrate how well the actual line ratios Rcalc for each

pair are recovered. The `Correlated' ratios (errors in b-b rates only) are indicated by � and

the `Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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Figure 4.8: Plots showing details of single RIT runs (used to create the upper portion of

�gure 4.3) for test model 1 and a range of di�erent smoothing parameters � and a �rst

order smoothing functional. The left hand plots show the solution returned by the RIT at

the end of its 10,000 generation run (solid line) and the model (dashed line) for perturbed

emissivities. The right hand plots demonstrate how well the actual line ratios Rcalc for each

pair are recovered. The `Correlated' ratios (errors in b-b rates only) are indicated by � and

the `Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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Figure 4.9: Plots showing details of single RIT runs (used to create the upper portion of

�gure 4.6) for test model 2 and a range of di�erent smoothing parameters � and a second

order smoothing functional. The left hand plots show the solution returned by the RIT at

the end of its 10,000 generation run (solid line) and the model (dashed line) for standard

emissivities. The right hand plots demonstrate how well the actual line ratios Rcalc for each

pair are recovered. The `Correlated' ratios (errors in b-b rates only) are indicated by � and

the `Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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Figure 4.10: Plots showing details of single RIT runs (used to create the upper portion of

�gure 4.6) for test model 2 and a range of di�erent smoothing parameters � and a second

order smoothing functional. The left hand plots show the solution returned by the RIT at

the end of its 10,000 generation run (solid line) and the model (dashed line) for perturbed

emissivities. The right hand plots demonstrate how well the actual line ratios Rcalc for each

pair are recovered. The `Correlated' (errors in b-b rates only) ratios are indicated by � and

the `Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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of equation (4.39) to estimate such an optimal value for the Tichonov inversion. This inversion

comparative is anticipated to show that the perturbations applied to the line emissivities can

be catered for in the RIT but not in a standard routine by design. Indeed, we present the

set of comparative test results for the RIT in �gures 4.11 and 4.12. These �gures, as stated

above, demonstrate the e�ectiveness of the RIT in combatting the e�ects imposed on the

inversion of equation (4.28) by perturbations in the line emissivities compared to that of a

the standard line intensity inversions. From these �gures it is clear that although the RIT

provides a more than adequate inversion for both of the test models when using the standard

emissivities it really does come into its own when supplied with the randomly selected set of

perturbed emissivities. Indeed, the latter is a very appropriate test since, in many situations

when analysing remotely sensed UV spectra, we cannot be sure about the nature of the

emitting plasma to appropriately de�ne the peculiarities of the line emissivities required to

perform the inversion.

Table 4.2: Details of optimal values of smoothing parameter � extracted from the various

the RIT runs on the two test models for the di�erent smoothing functionals. These values

are principally taken from �gure 4.3 to �gure 4.7.

Model Number Smoothing Order Perturbed / Standard �RITopt log10 �TICHopt

1 1st Standard 0.10 5.30

1 1st Perturbed 0.10 6.30

1 2nd Standard 0.50 5.25

1 2nd Perturbed 0.10 5.80

2 1st Standard 1.00 6.00

2 1st Perturbed 0.50 6.05

2 2nd Standard 0.05 5.45

2 2nd Perturbed 0.10 5.75

So, in terms of obtaining unique `reliable' inversions of solar UV spectroscopic data to

obtain useful empirical and physical models of the emitting structure, the RIT shows that is

a more than capable alternative to standard regularised inversions and the �gures included

here essentially speak for themselves especially when we note that the RIT explicitly forces

its solutions to be strictly positive which is not always the case for standard inversions.
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Figure 4.11: Comparative results for the RIT and a standard inversion when using both

standard (upper plots) and perturbed (lower plots) emissivities. Recovered functions from

the RIT (solid lines) and a standard Tichonov regularisation (dot-dash lines) are plotted

against the test model; in this case model 1, the continuous test model. The values of �opt

can be obtained from Table 4.2.
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Figure 4.12: Comparative results for the RIT and a standard inversion when using both

standard (upper plots) and perturbed (lower plots) emissivities. Recovered functions from

the RIT (solid lines) and a standard Tichonov regularisation (dot-dash lines) are plotted

against the test model; in this case model 1, the continuous test model. The values of �opt

can be obtained from Table 4.2.
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4.3.2 RIT test results for �(ne)

In a completely analogous approach to that immediately above we test the RIT in a bid to

recover the di�erential emission measure in electron density �(ne) from a series of synthetically

generated line ratios. Here we only present the results of the RIT for one test model form

of �(ne) because it is a diagnostic of the emitting plasma not commonly discussed in the

literature. It is anticipated that any form of inversion for �(ne), whether it be using the RIT

or a standard regularisation routine, will su�er from serious problems associated with the

poor conditioning (see, e.g., Section 2.1.2) of the set of line emissivities used. Again we leave

discussion of this e�ect to Chapter 5. A gross simpli�cation is that, where the line emissivities

of the optically thin emission lines are relatively peaked functions in Te and are not so when

considered as functions of ne. One look at �gures 5.1 and 5.9 will convince the reader of that.

As a consequence of the functional nature of the line emissivities the condition number CK

of equation (4.29) is much larger than that of the �(Te) inversion case above and the degree

of numerical stability in the inversion is dramatically reduced. Hence, the solutions are more

sensitive to data noise and are likely to be highly oscillatory in nature.

So, neglecting the issues concerning the poor conditioning we present the RIT test results

for a test model (and problem) that is conceptually no di�erent from those presented above.

Here the test model is a `Step' function over the ne domain (8:5 � log10 ne � 12:5) and is

shown in �gure 4.13. Again, we have performed the `forward-backward' analysis described

in Section 4.3 with the line intensities, ratios, standard and distribution of 20 perturbed

emissivities calculated using the recipe of Section 4.2.1.

Table 4.3 identi�es the line ratio pairs l used in these calculations along with their wave-

lengths (� �A) and their measure of the theoretical uncertainty in the line ratio �l (�lth as a

fraction of Rlth for a at model �(ne) function). It is clear that, as anticipated, the line ratio

pairs with each line belonging to a common ionisation stage of the atom having consider-

ably lower values, in general, than others being typically in the range of �l � 2 � 6%. The

`Uncorrelated' line ratio pairs have typical values averaging around 10%.

The recovered form of �(ne) from the various runs using di�erent smoothing orders and

sets of emissivities are, as above, best considered globally before extracting speci�c optimal

solutions for comparison with the standard line intensity approach. So, we again plot the

vector v (= (�;D2; �2)) for each di�erent RIT setup to identify the optimal value of � (�opt).

Figures 4.14 and 4.15 show these plots for the �(ne) step function with �rst and second order
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Table 4.3: Details of the line pairs used in the RIT runs on �(ne) presented in this chapter.

For each ratio pair l = (i; j) of Rij the numerator, i, (N) and denominator, j, (D) lines are

indicated, along with the ionic stage to which they belong and their wavelength (� �A). Also

quoted is the measure of uncertainty �l (i.e. �thl as a percentage of the theoretical line ratio

Rthl for a at model DEM) from the distribution of 20 perturbed line emissivities. Ratio

pairs 1 through 18 are known here as `Correlated' ratios since they have errors in the b-b

rates only whereas pairs 19 through 24 are `Uncorrelated' and include errors in the b-f rates

also. Note also that some of the ratio pairs contain no density information, e.g., pair #1 is

the ratio of two resonance lines.

# IonN �N IonD �D �l # IonN �N IonD �D �l

1 C IV 1548:18 C IV 312:420 0:0398 2 C III 977:020 C III 1175:26 0:0533

3 Mg IX 706:060 Mg IX 368:070 0:0376 4 Mg IX 706:060 Mg IX 445:980 0:0261

5 Ne VII 895:175 Ne VII 465:220 0:0375 6 Ne VII 895:175 Ne VII 562:993 0:0497

7 Ne VI 562:711 Ne VI 999:630 0:0550 8 Ne VI 562:711 Ne VI 454:072 0:0861

9 Si III 1206:49 Si III 1301:14 0:0638 10 N III 991:502 N III 772:385 0:0283

11 O VI 1031:91 O VI 150:089 0:0227 12 O V 1218:34 O V 629:732 0:0340

13 O V 1218:34 O V 761:128 0:0555 14 O IV 790:112 O IV 1401:15 0:0334

15 O IV 790:112 O IV 624:618 0:0414 16 O III 833:715 O III 1666:14 0:0386

17 Si X 621:079 Si X 287:092 0:0335 18 Si IX 692:731 Si IX 344:951 0:0429

19 C IV 1548:18 C III 977:020 0:0533 20 C III 977:020 C II 1335:66 0:0675

21 Si III 1206:49 Si IV 1393:75 0:0588 22 N V 1238:82 O V 629:732 0:2347

23 O VI 1031:91 O V 629:732 0:0359 24 O V 629:732 O IV 1401:15 0:1528
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smoothing for standard (top of plot) and perturbed (bottom of plot) emissivity inversions

respectively. Similarly to �gures 4.7 through 4.10 we present details of some speci�c runs

of the RIT in �gures 4.16 and 4.17 which clearly demonstrate the relationship between the

recovered solution (solid line) of the `Step' model (dashed line) and the values of Rcalc at the

end of the RIT run. Again, the right hand side of the �gures show the behaviour of the ratio

Robs

Rcalc
for all the line ratio pairs, the `Correlated' ratios (# : 1 ! 18) and the `Uncorrelated'

ratios (# : 19! 24) which are indicated by � and � respectively.

Table 4.4: Details of optimal values of smoothing parameter � extracted from the various the

RIT runs on the single test model for the di�erent smoothing functionals. These values are

principally taken from �gures 4.14 and 4.15.

Smoothing Order Perturbed / Standard �RITopt log10 �TICHopt

1st Standard 0.010 4.20

1st Perturbed 0.001 4.40

2nd Standard 0.010 4.00

2nd Perturbed 0.001 4.10

Figure 4.13: Plot of the `Step' test model of �(ne).
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4.3. RESULTS

Figure 4.14: The global results of the RIT test on the `Step' model for �(ne) using a �rst

order (n = 1) smoothing functional are presented here with quantities as described above.

In the upper plot, for standard emissivities, �opt has a value of 0:01 which has an associated

�2 of 0:181. Likewise, the lower plot, for perturbed emissivities, �opt has a value of 0:001

which has an associated �2 of 5:827. As in previous �gures it is clear that the �2 calculation

is dominated by the discontinuities in the model. Again, �opt is indicated by � on the upper

curve.
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4.3. RESULTS

Figure 4.15: The global results of the RIT test on the `Step' model for �(ne) using a �rst

order (n = 2) smoothing functional are presented here with quantities as described above.

In the upper plot, for standard emissivities, �opt has a value of 0:01 which has an associated

�2 of 0:100. Likewise, the lower plot, for perturbed emissivities, �opt has a value of 0:001

which has an associated �2 of 5:456. As in previous �gures it is clear that the �2 calculation

is dominated by the discontinuities in the model. Again, �opt is indicated by � on the upper

curve.
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4.3. RESULTS

Figure 4.16: Plots showing details of single RIT runs (used to create the lower portion of

�gure 4.14) for the `Step' model and a range of di�erent smoothing parameters � and a �rst

order smoothing functional. The left hand plots show the solution returned by the RIT at

the end of its 10,000 generation run (solid line) and the model (dashed line) for standard

emissivities. The right hand plots demonstrate how well the actual line ratios Rcalc for each

pair are recovered. The `Correlated' ratios (errors in b-b rates) are indicated by � and the

`Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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4.3. RESULTS

Figure 4.17: Plots showing details of single RIT runs (used to create the lower portion of

�gure 4.15) for the `Step' model and a range of di�erent smoothing parameters � and a

second order smoothing functional. The left hand plots show the solution returned by the

RIT at the end of its 10,000 generation run (solid line) and the model (dashed line) for

perturbed emissivities. The right hand plots demonstrate how well the actual line ratios

Rcalc for each pair are recovered. The `Correlated' ratios (errors in b-b rates) are indicated

by � and the `Uncorrelated' ratios (errors in b-f rates also) are indicated by �.
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From �gure 4.18, the results of the RIT runs for this particular test, it is clear that

although the RIT produces an slightly over-smoothed solution it yields a recovered structure

that is signi�cantly better than the highly oscillatory (not strictly positive) solution of the

standard intensity inversion in the presence of 15% data noise6. Recalling that we prescribe

only that the solution satisfy the two criteria (recovery of Robs with a certain degree of

prescribed smoothness, however de�ned) we observe little of the oscillation in the RIT test

results even though the value of CK is signi�cantly higher than that of the previous �(Te)

inversions (1017 compared to 1011). It is clear again that the RIT also preserves the positivity

of the recovered solutions even though the solutions appear over-smoothed this is an artifact

of the `atness' of the line emissivities themselves. This e�ect is explained in the next chapter.

4.3.3 RIT inversion results using a generalised smoothing functional

From some of the results presented above, speci�cally model 2 of Section 4.3.1, are reasonable

solutions given the limited nature of the smoothing functionals used. This is especially true

when discontinuities in the DEM functions are likely to be present. The following discussion

shows that it is very simple to implemented a generalised smoothing functional to resolve

sharp features in DEM functions f(se) with the RIT.

In this case we will implement a form of Maximum Entropy (ME) smoothing discussed in

Section 2.1.3.3. The form of �(f(se)) (cf. equation (4.33)) now being, for f(se) discretised

over N points in the se domain

�(f(se)) =
NX
i=1

�
fi
y

�
ln

�
fi
y

�
(4.42)

where fi is the evaluation of f(se) at index point i and y is the prior of the solution taken to

be the average summed over the entire domain (y = hf(se)i).

The global results of the RIT runs using this ME form for the smoothing functional

on Model 2 for standard and perturbed emissivities over a range of smoothing parameters

are presented in �gure 4.19. Again we can identify, for the perturbed emissivity inversion

alone, the optimal value � (0.580) and we use the corresponding solution to compare with

the RIT recovered results for regularising functionals n = 1; 2. Figure 4.20 shows that using

an ME approach allows a less subjective interpretation of the data; simply because no strict

6These oscillations in the solution are visibly less when the data noise is not so high. This can be observed

for 5% intensity noise in the next chapter.

117



4.3. RESULTS

Figure 4.18: Comparative results for the RIT and a standard inversion when using both

standard (upper plots) and perturbed (lower plots) emissivities. Recovered functions from

the RIT (solid lines) and a standard Tichonov regularisation (dot-dash lines) are plotted

against the test model; in this case model 1, the continuous test model. The values of �opt

can be obtained from Table 4.4.
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functional form is imposed on the solution.

Figure 4.19: The global results of the RIT test on model 2 of Section 4.3.1 using a Maxi-

mum Entropy smoothing functional are presented here with quantities as described in the

corresponding �gures above. In the upper plot, for standard emissivities, �opt has a value of

0:05 which has an associated �2 of 0:317. Likewise, the lower plot, for perturbed emissivities,

�opt has a value of 0:10 which has an associated �2 of 0:580.
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4.4. APPLICATION OF THE RIT TO SERTS-89 DATA

4.4 Application of the RIT to SERTS-89 data

Now we present details of the application of the RIT to data acquired by the aforementioned

SERTS mission own on May 5th 1989 (hereafter SERTS-89). The aim of this analysis being

the recovery, and comparison, of the di�erential emission measure in Te for the transition

region and corona (5 � log10 Te K � 7) with those published, using the same data previously

(Brickhouse et al. 1995; Landi & Landini 1997; Lanzafame et al. 1998).

The observations made during the SERTS-89 ight concentrated on one active region

(NOAA AR5464) from which a total of 269 emission lines were measured7 in a wavelength

range covering 170-450 �A. Details of the data reduction and calibration can be found in

Thomas & Neupert (1994).

Application of the RIT to this particularly interesting dataset may resolve discrepencies

in the DEM analysis presented in each of the papers given immediately above. Each author

published recovered forms for �(Te) functions showing di�erent functional structure (having

direct, potentially incorrect, implications for the physical structure of the plasma itself)

7The absolute intensities of the lines were averaged over the entire duration of the ight.

Figure 4.20: This plot shows the speci�c results of the Maximum Entropy smoothing func-

tional of equation (4.42). It is clear that the RIT is adaptable to di�erent forms of �(f(se)).
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4.4. APPLICATION OF THE RIT TO SERTS-89 DATA

between 6 < log10 Te < 7. The DEM analysis presented by Brickhouse et al. (1995) found

that �(Te) had a single temperature peak whereas the analysis of Landi & Landini 1997 (see

top of �gure 4.21) was triple peaked over the same region. As an aside, the DEM analysis of

Brosius et al. (1996) for SERTS-91 and SERTS-93 averaged active region spectra suggested

that �(Te) should be double peaked over this temperature range. The analysis presented in

Lanzafame et al. (1998) (also advocating the single peak �(Te), see bottom of �gure 4.21)

demonstrated that spurious results such as the above may arise from the same theoretical

uncertainties in the line emissivities discussed by Judge et al. (1997) but also from the use

of an integral inversion technique with an arbitrary smoothing functional. Here, we see what

the RIT can recover from the same data.

As far as our analysis is concerned, we concentrate on the functional form of �(Te) recov-

ered by the RIT (using all three smoothing functionals) over a �xed number of generations

(10,000) for a 30 point temperature discretisation. The line emissivities are calculated at a

�xed electron density (ne = 5 � 109 cm�3; Lanzafame et al. 1998) obtained using a single

density sensitive line ratio8.

From the `stronger' of the 269 emission lines observed we have selected 24 `Correlated'

pairs of lines from the same ionisation stage (to minimise likely systematic uncertainties,

leaving essentially b-b rate errors only). As above, we calculate the value of �lth for each

ratio pair l using the recipe of Section 4.2.1 and present the details (wavelength, intensities,

observational errors and fractional theoretical errors �l) of each ratio pair in Table 4.5. Note

that all the values of �l lie in the 2-7 % range.

Figures 4.22 through 4.24 show the details of the RIT runs for the �rst, second order and

ME smoothing functionals respectively. As for �gure 4.4 we present these global results for

the vector v (= (�; D2; �2)) and indicate the solution with the minimum kvk2 on the curve

by �. This `optimal' solution is plotted in the lower left of each �gure. Similarly, in the lower

right of the �gures, we plot the calculated line ratios Rcalc (indicated by �) returned at the end

of that RIT run against the observed line ratios Robs (indicated by �) and their observational

errors. These �gures show the same optimisation trends (i.e. the minimum kvk2 coinciding

with the best solution) as those presented in the previous section so we therefore adopt these

solutions as the optimal forms of �(Te) on application of the RIT to the SERTS-89 data.

It is clear from �gure 4.25 that the �(Te) functions recovered by all three smoothing

8Although we have discussed the use (and ambiguities) of line ratios as a single density measure of a clearly

inhomogeneous plasma, for this discussion, we will go on `blind faith'.
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4.4. APPLICATION OF THE RIT TO SERTS-89 DATA

Figure 4.21: Di�erential Emission Measure functions for an averaged solar active region using

EUV line intensities observed by SERTS-89. Top: (from Landi & Landini 1997) The DEM

function recovered from the inversion shows a triple peaked form between 6 < log10 Te < 7

calculated for log10 ne = 10. This is in contrast to that derived from the same data (bottom)

by Lanzafame et al. (1998) which shows only a single peak in the same temperature range.

The lower plot shows DEMs recovered for line emissivities calculated for a series of uniform

electron densities to see if a similar multiple peaked function could be achieved.
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Table 4.5: Details of the line pairs used in the RIT runs on �(Te) for EUV line emission data

observed by SERTS-89. For each ratio pair we give the ion to which it belongs, the wave-

lengths of the lines used (� �A), their intensities Iobs (units erg cm�2 sr�1 s�1) the observed

line ratio Robs
l , the observational error �obsl and a measure of the theoretical uncertainty in

the line ratio �l (cf. Tables 4.1 and 4.3). The full line list for the SERTS-89 ight, from which

this is extracted, can be found in Thomas & Neupert (1994).

# Ion �N �A Iobs
N

�D �A Iobs
D

Robs
l �lobs �lth

1 O III 374.075 14.4 374.164 4.9 2.939 1.313 0.062

2 C IV 384.031 8.6 419.713 12.4 0.694 0.301 0.023

3 O V 215.245 79.4 248.460 59.7 1.330 0.750 0.058

4 Ne VI 399.826 14.9 401.928 84.6 0.176 0.039 0.020

5 Ne VI 433.172 7.5 435.641 9.8 0.765 0.355 0.054

6 Mg VII 429.132 10.9 431.288 17.6 0.619 0.186 0.031

7 Mg VII 278.393 114.0 319.018 76.4 1.492 0.380 0.059

8 Mg VIII 315.015 253.0 338.983 53.8 4.703 0.933 0.043

9 Al IX 300.560 30.6 305.055 17.3 1.769 1.031 0.059

10 Al IX 384.950 7.0 392.425 15.3 0.458 0.154 0.021

11 Mg IX 368.057 1070.0 443.967 19.6 54.592 11.101 0.048

12 Si IX 290.687 33.2 296.113 208.0 0.160 0.077 0.043

13 Si IX 341.950 29.4 345.120 70.9 0.415 0.090 0.037

14 Si X 253.787 207.0 272.005 131.0 1.580 0.517 0.062

15 Si X 292.170 43.7 347.408 210.0 0.208 0.078 0.045

16 Si XI 303.326 2930.0 365.429 39.8 73.618 13.705 0.055

17 Si XI 361.410 23.7 371.492 14.5 1.634 0.517 0.049

18 S XII 288.420 135.0 299.540 47.2 2.860 1.195 0.034

19 S XIV 417.645 184.0 445.673 65.5 2.809 0.460 0.035

20 Ar XVI 353.860 7.7 389.069 12.8 0.602 0.307 0.056

21 Fe XVI 262.967 654.0 265.018 26.1 25.057 12.501 0.031

22 Fe XVI 335.401 10400.0 360.754 4320.0 2.407 0.542 0.051

23 Ca XVIII 302.205 25.3 344.760 13.6 1.860 0.890 0.060

24 Ni XVIII 291.970 357.0 320.537 152.0 2.349 0.411 0.027
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Figure 4.22: The global results of the RIT operating on SERTS-89 data with a �rst order

smoothing functional. The upper plot (cf. �gure 4.4) indicates (�) that the solution minimis-

ing vector v = (�;D2; �2) is obtained for a smoothing parameter �opt of 0.010 and with an

associated �2 of 7.300. The lower plots shows this optimal solution (left) and the recovery

of the observed line ratios (Robs and Rcalc are given by � and � respectively) with their as-

sociated observational errors (right). The solution shown clearly agrees with the single peak

DEM in the 6 < log10 Te < 7 region.
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Figure 4.23: The global results of the RIT operating on SERTS-89 data with a second

order smoothing functional. The upper plot indicates that the solution minimising vector

v = (�;D2; �2) is obtained for a smoothing parameter �opt of 0.005 and with an associated

�2 of 7.135. The lower plots shows this optimal solution (left) and the recovery of the

observed line ratios (Robs and Rcalc are given by � and � respectively) with their associated

observational errors (right). The solution shown clearly agrees with the single peak DEM in

the 6 < log10 Te < 7 region.
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Figure 4.24: The global results of the RIT operating on SERTS-89 data with a Maximum

Entropy smoothing functional. The upper plot indicates that the solution minimising vector

v = (�;D2; �2) is obtained for a smoothing parameter �opt of 0.050 and with an associated

�2 of 7.334. The lower plots shows this optimal solution (left) and the recovery of the

observed line ratios (Robs and Rcalc are given by � and � respectively) with their associated

observational errors (right). The solution shown clearly agrees with the single peak DEM in

the 6 < log10 Te < 7 region.
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functionals clearly agree with the single peak DEMs of Brickhouse et al. (1995) and Lanzafame

et al. (1998) and there is no clear evidence to support the triple peak model. Although this,

again, highlights the severely ill-posed nature of the DEM inverse problem.

Figure 4.25: Plots of the three RIT solutions presented in �gures 4.22, 4.23 and 4.24 for the

three smoothing functionals. The solid line is the RIT solution for the �rst order smooothing

functional with the dot-dash line and dot-dot-dash lines those solutions from the second order

and Maximum Entropy smoothing functionals respectively. All of the solutions presented

agree with the single peak DEM in the 6 < log10 Te < 7 region. It is noted that there are

considerable di�erences in the recovered functions (particularly �rst and second order) and

to assess wether one solution is \better" than the others requires that we consider their �nal

�2 values for the optimal smoothing parameter used. In this case, there is little di�erence in

these �nal values and we can state that these solutions are statistically equivalent.

4.5 Discussion

We have shown that for an optically thin plasma, there is indeed a unique mathematical

relationship between the `mean' spectroscopic quantities hnei, hTei and the di�erential emis-
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sion measure functions (�(Te), �(ne), and �(ne; Te)). These relationships are true provided

certain assumptions hold regarding the nature of the emitting plasma, and the characteristic

behaviour of particular line ratios, and show the equivalence between the full inversion and

mean value methods.

For an optically thin, homogeneous, plasma and given a set of observed resonance line

intensities, we have derived an expression that relates the `mean' spectroscopic temperatures

fhTeig and the discretised di�erential emissionmeasure in temperature � (see equation (4.16)).

Following a similar method we have obtained, for an isothermal plasma, an expression relating

the `mean' spectroscopic densities fhneig and the discretised di�erential emission measure in

electron density, �, which is given in equation (4.20). In the treatment of the general bivariate

DEM function �(ne; Te), Section 4.1.3 shows that we can obtain a representation of �(ne; Te)

when the conditions for Sections 4.1.1 and 4.1.2 occur simultaneously (i.e. situations where

`mean' densities and temperatures are actually de�ned). Essentially this means that for a

large enough set of observed lines with di�erent temperature and density characteristics, a

relationship of the form of equation (4.27) will hold for the particular set of inferred `mean'

fhTei; hneig pairs.

Finally, we have discussed a potentially important inversion scheme, the Ratio Inversion

Technique (RIT), based upon minimising di�erences between observed and computed ratios,

instead of the more usual intensities. The RIT o�ers the possibility of removing large,

systematic errors that may arise from uncertain ionisation balance, as have been suggested

to explain solar data (Judge et al. 1995), and have been demonstrated to be the dominant

source of error in standard inversions of line intensities (Judge et al. 1997). We can then

clearly see that a method such as the RIT9 is essential if the recovered DEM functions are to

be used to further interpret solar UV line emission spectra from the SOHO or future missions.

9A version of the RIT code, written in Fortran-77, that used the aforementioned PIKAIA GA is given in

Appendix A.2.
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Chapter 5

Re-conditioning DEM inverse

problems

This Chapter

In an inverse problem of any kind poor conditioning of the inverse operator decreases the nu-

merical stability of any non-regularised solution in the presence of data noise. This chapter will

show that, using a heuristic approach, we can improve the conditioning of the di�erential emis-

sion measure (DEM) inverse problems considerably by judicious choice of the integral operator

and that there is indeed a set of solar UV/EUV emission lines that drastically increases the

chance of obtaining unique electron density and temperature distributions of the emitting region

of the solar atmosphere. This is essentially a way of formalising the choice of emission lines,

and making a reproducible set of choices, instead of making the subjective line choices made in

earlier work.

The material presented in Chapters 2 and 4 has shown that the choice of emission lines

is critical to form accurate diagnostics of the solar plasma. The particular characteristics

of di�erent emission lines (or ratios thereof) will yield di�erent information about the emit-

ting plasma volume. Indeed, since the dawn of space-borne solar UV/EUV spectroscopy

the emission lines observed display a qualitative physical dependence on the feature being

observed. Today we want to obtain reliable1 diagnostics of the outer solar atmosphere. Such

diagnostics take the form of distributions of plasma characteristics (ne, Te, etc) such as the

1Reliable in the sense that we require the solution to be as unambiguous as possible; if there is a feature

in the recovered diagnostic distribution (e.g, gradient, curvature or discontinuity) we require that this is not

an artifact of the numerical processing.
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di�erential emission measure (DEM) functions discussed in the previous chapters. However,

the process of inferring such a distribution of quantities is not one to be taken lightly since

it is `booby-trapped' with numerical instability and non-uniqueness. Previous work on these

DEM problems have concentrated on the physical nature of the emission lines used, including

work discussed in this thesis. However, we present a new approach in an e�ort to reduce, as

much as possible, the ambiguity of such poorly conditioned inverse problems. We do this by

considering the mathematical properties of the solar UV/EUV emission lines and not only

their physical properties, i.e. the ne, Te sensitivity of each.

We have seen that, as far as inverse problems are concerned, the uniqueness and numer-

ical stability of the solution is acutely sensitive to the conditioning of the resulting matrix

equation. For the DEM inverse problems we must maximize the `potential' of the data in-

version and we will see that the choice of lines2 to analyse will help achieve this goal. The

freedom present in the DEM problems (construction of kernel matrices) can be exploited to

disclose an optimal set of lines from the UV/EUV lines in the wavelength range of the SOHO

CDS/SUMER instruments (150 � 1610 �A).

For example, consider the emission line labelled l with total integrated line intensity (Il)

given by the double integral in terms of ne and Te as

Il =

Z
Te

Z
ne

Kl(ne; Te) �(ne; Te) dne dTe: (5.1)

where �(ne; Te) andKl(ne; Te) are as de�ned previously. Equation (5.1) can, as demonstrated

in Chapters 2 and 4, be reduced to a univariate Fredholm integral equation of the form

Il =

Z
se

Kl(se) f(se) dse (5.2)

where (for plasma characteristic se = ne; Te) Kl(se) is the line emissivity3 and f(se) is

representative of the di�erential emissionmeasure in either ne or Te. We have noted previously

(Chapter 2) that one such equation will only allow us to reliably specify f(se) at one chosen

se point since we only have one data point Il. So, if we observe N emission lines and discretise

equation (5.2) at M points in se we will have to built a matrix equation around an M �N

matrix (KM�N ), the kernel matrix
4 of the integral equation.

2For brevity, the term `line' will be used for emission line.
3The term `emissivity' is used throughout this chapter to represent the line emission coeÆcient normalised

by n2e.
4For the rest of this chapter we will use the term `kernel' to mean the kernel matrix of the integral equation,

often by simply referring to K.
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Once the kernel matrix has been `constructed' we must assess the degree of numerical

instability and non-uniqueness present in the discretised form of equation (5.2). For observa-

tional errors ÆIl in the total integrated line intensity Il and assuming that K is free of error,

the fractional error Æf in f(se) is given by (cf. equation (2.27))

kÆfk

kfk
� CK �

kÆIk

kIk
(5.3)

where k � k is any Euclidean norm and CK is the condition number of the kernel.

We have seen, in Chapter 2, that the perfectly conditioned matrix has CK = 1 and is

the identity matrix of order n (In�n) or any diagonal matrix. Similarly, we have seen that

kernel matrices with a high level of linear dependence of their rows have very large condition

number which tends to 1 as the degree of linear dependence increases. So, given the critical

dependence of solutions f(se) on CK , we have two hypothetical questions to answer :

Q1 \Is the order in which discretised emissivities are placed in the kernel matrix important

?"

A1 No, the properties of matrices (determinant, condition number, etc) remain unchanged

by elementary row operations such as row interchange (see, e.g., Whitelaw 1983).

Q2 \When we are constructing the kernel matrix from the number (X) of possible lines in

the observed spectrum, which N (N < X; using each only once) should we choose such

that the conditioning of the f(se) inverse problem is optimised, for each case of se ? If

such an optimal subset exists, what physically makes those lines better suited than those

not chosen ?"

A2 These are precisely the questions this chapter will address.

So, adopting the scenario of Question 2, the problem has a potentially massive num-

ber (
�X
N

�
= X!

N !(X�N)!) of possible \solutions". In this case a solution is a vector V =

(v1; v2; : : : ; vN ) with each element, vi, a unique line identi�er (each vi can only appear once

in V) such that the condition number CK of K is minimised. Indeed, to understand what

such solutions mean we require a mental picture of what the di�erence between a poorly

conditioned kernel and a well conditioned one is. Recalling from above that the condition

number is, if only philosophically, directly proportional to the degree of linear dependence in

the rows of K. The conicting requirements of K are clear, large numbers of lines ensures

that the coverage of the se domain is good but there is a high value of CK , put less lines
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in the study and CK decreases but the coverage is poorer. In constructing K we must �nd

the happy medium. That is, we might expect the optimised kernel matrix K to have almost

linearly independent rows; the ideal case being the delta functions, Æ(x� x0), of the identity

matrix. However, for these inverse problems the line emissivities that form the rows of the

kernel matrix have a �nite amount of spread. We now discuss the form of this `spread'.

To discuss the functional behaviour of certain emission lines we must return to equa-

tion (5.1) and recall from Section 2.2 that the line emissivity Kl(ne; Te) ( emission coeÆcient

normalised to n2e) can be written as

Kl(ne; Te) =
h�lAl

4�

nu(l)
nionne

nion
nel

nel
nH

nH
ne

erg cm3 sr�1 s�1 (5.4)

where Al is the Einstein-A coeÆcient, nu(l) is the population density of the upper level of

the transition, nion
nel

, nel
nH

and nH
ne

are the ionic abundance (ionisation fraction), elemental

abundance, and relative abundance of H to electrons (taken to be constant) respectively.

This relationship shows that the mechanism for upper level population will determine how

Kl(ne; Te) will behave as a function of ne and Te. We recall the simple 3-level atom, with

level 3 metastable, of Section 2.2 as an aid to this description. Equations (2.78) and (2.79)

give (upon solving for the non-LTE statistical equilibrium) the population densities of levels 2

(n2) and 3 (n3) in terms of the population density of the ground level (n1). For the resonance

line (transition from level 2 to the level 1) we have, assuming the population of level 3 to be

negligable,

n2 =
nen1C12

A21
(5.5)

giving an emissivity (Kres(ne; Te)) of the form

Kres(ne; Te) =
h�12C12

4�

n1
nion

nion
nel

nel
nH

nH
ne

: (5.6)

An intersystem line (transition from level 3 to level 1), involving the population density of

the metastable level 3,

n3 =
nen1C13

(A31 + neC23)
(5.7)

will have an emissivity (Kint(ne; Te)) behaving as

Kint(ne; Te) =
h�31
4�

 
C13

1 + neC23
A31

!
n1
nion

nion
nel

nel
nH

nH
ne

: (5.8)

where Cij = ��ij(Te)T
�1=2
e (j > i) is the collisional excitation coeÆcient (s�1), �ij(Te) is

the Maxwellian averaged collision strength and � is a numerical constant. The functional
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behaviour of all the line emissivities in this chapter can be categorised as belonging to one

or the other of these two classes. In this non-LTE plasma regime the electrons are assumed

to belong to a Maxwell-Boltzmann distribution and populate the ground level preferentially.

Such simpli�cations mean that Cij is treated strictly a function of Te. Indeed, at this point

we can categorically state that :

- The assumption of a Maxwellian electron distribution ensures that Kl(ne; Te) will be ap-

proximately Gaussian in the Te domain or, more exactly, peaked around the temperature

of maximum formation of the ionic stage to which that transition belongs with a full width

at half maximum of 0.3 in log10 Te (see, e.g., Jordan 1969).

- All lines will emit irrespective of the electron density of the plasma. Therefore Kl(ne; Te)

will cover the entire ne(10
8 - 1012 cm�3) domain of the upper solar atmosphere, but their

functional behaviour will depend critically on the transition from which they arise.

For the cases considered in this chapter we will consider only univariate emissivities,

Kl(se). The physical reasons directly above ensure that a �nite amount of `overlap', and

hence linear dependence in the kernel matrices will occur; we will never obtain a DEM kernel

matrix with CK � 1. We might presume, at this point, that the `best' kernel matrices have

rows which, when summed, cover the se domain uniformly. Conversely, we would expect the

`poorest' kernel matrices, those with the highest condition numbers, to contain rows which,

when summed, cover little of the se space and are highly non-uniform in appearance. We

will return to the discussion of these properties in due course.

The emissivities used in this chapter (as in the previous one) belong to strong transitions

in the wavelength range 150�1610 �A for ions of various iso-electronic sequences from various

atoms including : Carbon (II - IV), Iron (XII - XV), Magnesium (VI - X), Neon (VI -

VIII), Nitrogen (II - V), Oxygen (II - VI) and Silicon (III - XII). The precise details of the

iso-electronic transitions used are given in Table 5.1 and there are 133 lines in total.

We will perform this analysis by considering the variation of kernel condition number

CK (of Section 2.1) with di�erent choices of lines. The calculations presented here were

made using a variation on the GA heuristic search algorithm presented in Chapter 3 called

SELECTOR. The power of this idea arises from the fact that, in the DEM inverse problems,

we can arrange the kernel matrix K in any way we choose, provided that we have observed

the relevant lines in the spectrum.

We discuss the basic mechanism of the SELECTOR GA in Section 5.1 with details of trials
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Table 5.1: The details of the emission lines used to produce the emissivities in this chapter.

Only lines in the range of the CDS and SUMER instruments on SOHO were used (150-

� 1600 �A). Notable exceptions are the lines belonging to the iron ions (Fe XII-XV).

Sequence Transitions Ions

Lithium 2s� 2p, 2s� 3p C IV, N V, O VI, Ne VIII, Mg X, Si XII

Beryllium 2s2 1S � 2s2p 3P , 1P C III, N IV, O V, Ne VII, Mg IX, Si XI

2s2p 3P , 1P � 2p2 3P

Boron 2s22p 2P � 2s2p2 4P , 2D C II, N III, O IV, Ne VI, Mg VIII, Si X

2s2p2 4P � 2p3 4S

Carbon 2s22p2 3P � 2p3 5S, 3D O III, Mg VII, Si IX

2s22p2 3P � 2s22p2 1D, 1S

Nitrogen 2p3 4S � 2p3 2D, 2P Mg VI

Sodium 3s� 3p Si IV

Magnesium 3s2 1S � 3s3p 3P , 1P Si III

3s3p2 3P � 3p2 3P
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5.1. SPECIFICS OF SELECTOR

on the two `diagnostic' DEM inverse problems in Sections 5.2 and 5.3. These trials show that

there are indeed subsets of the X observable lines that make the DEM inverse problems

considerably better conditioned than using all of the observable lines in the inversion (for a

�xed number of solution points M). Indeed, for each of the test cases, we will discuss the

properties of the emission lines that make them better than others in the inverse problem

framework.

5.1 Speci�cs of SELECTOR

We present a Genetic Algorithm (GA) method SELECTOR5 that, unlike those discussed in

the previous chapters does not minimise with respect to a standard �2 measure but instead

minimises CK , the condition number of the DEM inverse problem kernel matrix. Therefore,

our simple algorithm will choose a subset of N lines from the 133 lines present in the HAO-

diaper calculations6 such that CK is minimised.

We note that this (combinatorial) condition number minimisation problem involves the

identi�cation of a subset of N distinct elements from a search list of X (> N) possible choices

where the ordering of these elements is not important. A GA naturally lends itself to the

optimisation of such a problem but becomes a more powerful tool when analogy is drawn

(algorithmically and computationally) between this problem and that of the Travelling Sales-

man Problem (TSP) discussed in Chapter 10 of Michalewicz (1994). Consider one possible

statement of the TSP (given a set of N elements, the TSP requires to �nd the permutation

of those elements that minimises some criterion).

\Before going on a road trip a salesman will plan his journey to be: cost e�ective, of

minimum duration and yet to bring in as much business as possible. If he is required

to visit X towns, in no speci�c order, passing through each only once to make his calls.

Which route should he take ?"

It would therefore seem obvious to take advantage of the methodology used for the TSP

to construct the list of distinct elements from which we hope to construct the DEM kernel

matrix with the smallest possible condition number.

The construction of such a list of distinct elements from a reference list with possible

5The actual Fortran 77 code for the SELECTOR GA is included in Appendix B.2.
6It is noted that the Chianti database of Dere et al. (1997) would also provide appropriate data for these

calculations.
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5.1. SPECIFICS OF SELECTOR

non-distinct entries is readily carried out using the Ordinal Representation scheme of

Michalewicz (1994). The task is to extract N (�xed) distinct elements from a list S of X

possible values, where Sm = m, j = 1; :::;X. An ordinal vector e is made up of N elements

(en) with values in the range 1 � en � X � n + 1. The corresponding element vector E is

constructed according to the following iterative procedure :

do n = 1; N

En := Sen ?

Sk := Sk+1; k = n; :::;X � n� 1 ? ?

enddo

(??) has the consequence that Sen is removed from the list, and the list size is reduced by

one at each iteration. Consider for example a situation where N = 10 distinct elements must

be extracted from a reference list of X = 40 possible values. The ordinal vector

e = (4; 5; 1; 29; 26; 11; 31; 8; 22; 5)

decodes into

E = (4; 6; 1; 32; 29; 14; 37; 11; 27; 8) :

This ordinal representation scheme has some attractive characteristics. It is quite simple to

implement, and having the ej 's uniformly distributed in their allowed bounds results in a

uniform distribution of Ej 's. However, one can easily verify that when pairs of e are acted

upon by the one-point cross-over operator (see �gure 3.1) , the ej 's located right of the splicing

point can decode into Ej's not originally coded by the parent e's. This is a direct consequence

of the leftward shifting (??) associated with the encoding procedure. This is incompatible

with the expected behavior of cross-over, which should lead to exchange of an intact subset of

the Ej 's. The only tolerable exception is when the cross-over operation introduce additional

duplicate entries in the pair of e resulting from the cross-over operation. Likewise, under the

ordinal representation uniform one-point mutation can potentially alter all elements of E.

This makes the standard ordinal representation unsuitable for the present application.

A simple modi�cation of standard ordinal representation, which we hereafter refer to

as Ranked Ordinal Representation or simply as ROR (Charbonneau 1998 - Private

Communication), can bypass the problems incurred using standard genetic operators. The
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5.1. SPECIFICS OF SELECTOR

ROR method consists of ranking the ordinal vector e in decreasing order (so that en+1 � en)

prior to applying the ordinal algorithm (??). So, under this scheme the ordinal vector

e = (4; 5; 1; 29; 26; 11; 31; 8; 22; 5)

now decodes into

E = (31; 29; 26; 22; 11; 8; 5; 6; 4; 1) :

Clearly, if e does not contain duplicate entries then E = e (with e ranked). If however entry

en = en+1 for some n (< N), then En = en and En+1 = en + 1 such that the symbolic

algorithm given above becomes :

do n = 1; N

En := min(X � n+ 1; Sen)

Sk := Sk+1; k = n; :::;X � n� 1

enddo

This actually introduces a slight bias toward high values of En, but for relatively small

population sizes (Np � 100, say) it remains statistically insigni�cant as compared to the

realisation noise (/
p
Np). Thus ROR will ensure, for small population sizes, that the line

lists constructed throughout the �xed generation number run will have each selected line

represented only once.

The algorithmic steps of the SELECTOR GA are :

1. Using the ROR technique, choose N lines randomly for each member of the population

assuring that each line appears only once.

2. Calculate CK for each member of the population using either

(a) the condition number estimate of Cline et al. (1979) (see discussion in Appendix B.1

and Golub & Van Loan 1989).

(b) a full singular value decomposition (SVD) of the matrix to calculate CK = �max

�min
.

3. Rank the population according the condition number.

4. Perform breeding in the population using the cross-over and mutation operators (see Chap-

ter 3).
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5.2. OPTIMISING THE �(TE) INVERSE PROBLEM

5. Check that the maximum number of generations has not been reached, then return to

step 2, else proceed.

6. Return the set of UV/EUV lines that minimises the condition number of the kernel matrix.

5.2 Optimising the �(Te) inverse problem

The interpretation of UV/EUV emission spectra from solar and astrophysical plasmas of-

ten hinges on the inference of the emission measure di�erential in Te, �(Te). Recalling the

discussion of Section 2.2.1.1 we can simply de�ne

�(Te) =

Z
STe

n2e
jrTej

dSTe ; (5.9)

where STe is a surface of constant Te within the emitting volume of plasma. The emis-

sion measure di�erential in temperature can be taken, literally, as the temperature gradient

weighted mean square electron density.

We see that for a homogeneous plasma, with ne = no = 109 cm�3, the double integral of

equation (5.1) reduces to the single integral of equation (5.2) with se = Te and Kl(no; Te) =

Kl(Te) i.e.

Il =

Z
Te
Kl(Te) �(Te)dTe : (5.10)

The �(Te) function is the solution of this Fredholm integral equation of the �rst kind. Numer-

ical errors in the emission line intensities (ÆIl) of this inverse problem will, once discretised,

induce errors (Æ�) in the solution � of a magnitude given by equation (5.3).

The majority of publications containing derivation of �(Te) functions from observed

UV/EUV line intensities from the Sun or other stars adopt the \invert for all lines" or

\all-lines" approach (see, e.g., Kashyap & Drake 1998; Lanzafame et al. 1998). This method

involves the use every emission line observed to construct the kernel matrix (K) for the inverse

problem and hence perform the numerical inversion and obtain �(Te). The vast majority of

such publications completely neglect the e�ect of error propagation from data to solution

because of poor conditioning of the inverse problem kernel matrix. To counter the apparent

neglect of just how poorly conditioned this inverse problem is we will choose, using the GA

approach discussed above, an optimal subset of emission lines. The ultimate aim being that

this optimal set will have a signi�cantly lower kernel condition number than that of the \all-

lines" approach. To this end we consider the selection of the 30 emission lines7 (from the 133

7The number of lines used in the calculation is arbitrary, but taken to be 30 for this discussion.
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possible lines) that minimises the condition number CK of the �(Te) inverse problem using a

30 point Te discretisation. We show that this optimal subset does indeed have a signi�cantly

lower condition numbers than those using all of the observed lines.

So, what is the physical reasoning behind the statement that there is some subset of the

133 lines that have a signi�cantly better conditioned kernel than other subsets? To answer this

question we must look at the functional behaviour of the line emissivities as functions of Te.

For a resonance line in the simple 3-level atom, with ne constant (no = 109 cm�3), inspection

of equation (5.6) will show that the functional dependence of Kres(Te) is determined by the

interplay between the population of the ground level (itself dependent on the abundance of

the ionisation stage to which the transition belongs) and the collisional excitation rate of the

transition. The approximation of a Maxwellian-Boltzmann electron distribution will ensure

that Kres(Te) is a peaked function of Te with its maximum at some temperature To, the value

of Te where the ionic abundance is a maximum for this particular no.

As can be appreciated from equation (5.8) the Te dependence of an intersystem line's

emissivity is not quite as trivial. Equation (5.8) shows that the critical electron density nec

(where neC23 � A31) plays an important role. The value of nec is di�erent for each transition.

If we have for a particular intersystem transition the case where no � nec the temperature

dependence ofKint(Te) will be determined solely by the numerator, and will resembleKres(Te)

and be a strongly peaked function. However, another intersystem transition may depend on

a metastable level which has nce > no and then both the denominator and numerator must

be considered as important terms. Kres(Te) can be approximated from the collision strengths

(�13 and �23) and ionisation balance of the relevant transition by

Kint(Te) �
�13(Te) T

�1=2
e

1 + �23(Te) T
�1=2
e

nion
nel

: (5.11)

The resulting function has a roughly Gaussian shape, peaked at the temperature of max-

imum ionic abundance, but skewed shortward of To. Figure 5.1 demonstrates these slight

di�erences in functional dependence on Te for a resonance line (765:147 �A) and intersystem

line (1486:496 �A) of N IV.

Figure 5.3 shows the form of a typical run of SELECTOR for the �(Te) inverse problem

over 2000 generations with 100 individuals in the population. We see the normalised linear

superposition ( dSj(Te)) of all the selected emissivities K�
l (Te), normalised to the maximum
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Figure 5.1: The emissivities of a resonance line (solid line) and intersystem line (dashed

line) as functions of temperature only. These are for lines of N IV (wavelengths

765:147; 1486:496 �A) calculated for a electron density of no = 109 cm�3.
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5.2. OPTIMISING THE �(TE) INVERSE PROBLEM

Figure 5.2: The singular value (�n) distribution of the matrix constructed from all 133

emissivities considered in this problem for both, �(ne) and �(Te) inverse problems with a

30 point discretisation. Using the condition number estimate employed by SELECTOR we

obtain values of log10 CK = 18 and 12 for density and temperature kernels respectively.
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element KMax
l (Te), at generation j is given by

dSj(Te) =
MP
l=1

K�
l (Te)

Max(Sj(Te))
(5.12)

versus generation number. M is the number of points over which the emissivities are discre-

tised (M = 30 in this case). For this sample run we see that the minimum (log10 CK = 4:4972)

is very much smaller in comparison to the condition number (log10 CK = 11:55) of the \all-

-lines" approach (see �gure 5.2). The set of emission lines chosen at the end of this single

run of SELECTOR may not form the `optimal' choice that minimises CK , as we will see

below, but obtaining that set (in a evolutionary sense) displays certain characteristics men-

tioned above. For example, consider �gure 5.4 where we have plotted ( dSj(Te)) for generations
j = f1; 500; 1000; 1500; 2000g. The upper portion of this �gure exhibits a feature mentioned

above about the nature of the conceptually well conditioned kernel matrix, i.e. the superpo-

sition of the rows, taken in projection, should span the domain as uniformly as possible. By

comparing the upper and lower panels of �gure 5.4 we can see how the percentage of coverage

(PCj)

PCj =

R
Te

dSj(Te) dTe
M

(5.13)

varies with generation. The lower panel clearly shows that percentage of coverage is related

to the condition number: greater uniformity of kernel coverage gives lower values of CK .

A true test of this GA method for a problem of this combinatorial scale is to adopt a

Monte Carlo approach8. This approach involves obtaining optimal sets of emission lines for

many runs, each run having a di�erent randomly chosen starting population (see Chapter 3

for more details) which is then encoded using the ROR technique to ensure that all the lines

in the list are unique throughout the run.

Figure 5.5 shows that the Monte Carlo approach identi�es lines that have particular

properties, reducing the condition number of the kernel, and are chosen signi�cantly more

often than others. This �gure, however, gives no clear indication that any of these lines occur

together in the sets chosen, or in separate subsets, to form a kernel of signi�cantly lower

condition number. Identi�cation of such a set is left to inspection of �gure 5.6. Figure 5.6

shows the Monte Carlo runs vertically, each colour-coded9 according with the value of CK

8All Monte Carlo runs of SELECTOR were over 5000 generations to ensure that an optimal line set had

been acquired (2000 of which are required, on average, to get within a factor of 2 of the optimal CK).
9Colour coded using an colour table to make identi�cation easier; white indicating the lowest condition

number.
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Figure 5.3: Representation of the evolution of the a sample solution with generation number.

The calculation was performed over 2000 generations for a population of 100 individuals. For

the `�ttest' individuals in the generation we plot the normalised Sj(Te); the linear superposi-

tion of kernels in that subset of the 133 lines, see equation (5.12) (Each kernel is normalised

with respect to its maximum element and each Sj(Te) is then normalised to its maximum

element such that an unbiased estimate of temperature coverage can be obtained). The inset

of this �gure (top right) shows the variation of CK at each generation step.
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Figure 5.4: The top plot superimposes plots of Sj(Te) at points j = f1; 500; 1000; 1500; 2000g

during the evolutionary run shown above. The lower plot shows the coverage percentage

of each Sj(Te) at every generation, this plot clearly demonstrates that better conditioned

kernels have a more uniform `amplitude' spread over the whole Te domain.
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belonging to the �ttest individual at the end of the �ve thousandth generation. Of the 300,

5000 generation, runs of SELECTOR the value of CK associated to the set of emission lines

provided by run 106 is less than those of the other runs, with log10 CK = 4:2709. The data

from �gures 5.5 and 5.6 is collated in Table 5.2, with all lines of �gure 5.5 above the mean

selection frequency (72:1805) are given with the temperature at which Kl(Te) peaks (T
max
e )

and if they belong to the set chosen in run number 106 then they are indicated by an asterisk

(�).

The results of the Monte Carlo sequence of runs show that, for the �(Te) inverse problem,

an optimal set exists and that the inverse problem will be considerably better conditioned

than one using the \all-lines" approach. It is also demonstrated that the best kernels have

the greatest degree of uniform coverage of the temperature domain (see, e.g, �gure 5.7).

This latter point ensures that DEM inversions performed using the optimised kernel will be

independent of the regularisation method used (see Chapter 2). To clarify this statement we

remember that regularisation smoothes discontinuous regions of the integration domain (i.e.

it will try to �ll in gaps and leaps with smooth polynomial functions). If the whole domain

is uniformly sampled in the way we have discussed, regularisation will not be allowed to alias

the recovered DEM function, �(Te).

Thus, to assess the validity of this GA analysis, we must perform an inversion for both

the optimal subset of 30 (those identi�ed in run 106) and the full set of 133 emission lines

to compare the stability of the inverted solutions. These inversions are performed using a

regularisation `forward-backward' method. This method involves computation of line inten-

sities (with appropriate errors, 15% in this test) for a given model �(Te) function. Then it

is a simple case of employing a Tichonov regularisation algorithm (described in Chapter 2.1)

with a range of smoothing parameters � (100 � 106) to obtain a solution. Figure 5.8 clearly

shows that the inversion performed with the optimal subset of lines is signi�cantly more sta-

ble numerically than that obtained when using the \all-lines" approach, especially over the

wide range of smoothing parameters used.

5.3 Optimising the �(ne) inverse problem

Although not commonly sought after in astrophysical observations, the di�erential emission

measure in electron density (cf. equation (5.9))

�(ne) =

Z
Sne

n2e
jrnej

dSne ; (5.14)
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Table 5.2: Details of the emission lines selected most at the end of the 300 Monte Carlo 5000

generation runs of SELECTOR. The emission lines included here are those with selection

frequencies greater than the mean of 72:1805 counts. The lines indicated by an asterisk (�)

are those belonging to run 106, the set having the minimum value of log10 CK = 4:2709. Also

given are the ions to which the line belongs, wavelengths � (�A), the number of times the line

was selected and the temperature at with the emissivity of the line peaks Tmax
e (K).

Ion � (�A) Count log10 T
max
e (K) Ion � (�A) Count log10 T

max
e (K)

C III 977:020 77 4:8 C III 1175:98 91 4:8

C III 1175:26 118 4:8 Mg VII 1189:82 76 5:7

Mg VIII 352:460 111 5:8 Mg IX 443:403 136 5:9

Mg IX 368:070 77 5:9 Mg X 609:793 108 6:0 �

Ne VI 454:072 170 5:6 Ne VI 562:711 123 5:6

Ne VI 1010:60 89 5:5 Ne VI 1006:09 136 5:5

Ne VI 999:630 93 5:6 Ne VII 895:175 168 5:6

Ne VII 562:993 144 5:6 Ne VII 887:279 119 5:6 �

Si III 1206:49 154 4:7 Si III 1301:14 148 4:7

Si III 1296:72 75 4:7 Si IX 344:951 74 6:0 �

Si X 287:092 117 6:0 � Si XI 368:378 161 6:1 �

Si XI 582:886 195 6:1 � Si XII 499:405 91 6:2

N III 771:544 140 4:9 N III 991:502 140 4:8 �

N III 771:900 74 4:9 N V 1238:82 122 5:1

O II 539:085 81 4:6 � O II 540:012 142 4:6

O III 833:715 80 4:9 O III 1666:14 115 4:8

O IV 1397:23 100 5:1 � O IV 1401:15 108 5:1

O IV 1407:38 73 5:1 O IV 624:618 127 5:1

O IV 790:112 131 5:1 O IV 1399:78 107 5:1 �

O IV 1404:80 114 5:1 � O V 761:128 128 5:3

O V 759:441 126 5:3 O V 1213:80 102 5:3 �

O V 1218:34 164 5:3 O VI 150:089 133 5:4 �

Fe XII 1349:36 98 6:0 Fe XIII 1370:85 111 6:2

Fe XIV 356:639 155 6:2 Fe XV 314:664 178 6:2
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Figure 5.5: Monte Carlo histogram of line selection frequency versus line results for 300

runs of the SELECTOR. This clearly shows the existence of a subset of the 133 lines that

have selection frequencies signi�cantly greater than the mean. However, these do not form

the optimal subset of 30 lines; taking the 30 most selected lines and computing CK gives

log10 CK = 6:324. The lower axis identi�es the atom (large division) and ionisation stage

(corresponding to the label) to which each frequency belongs.
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Figure 5.6: This �gure identi�es the optimal subsets of the 133 emission lines used (grouped

according to their atomic/ionisation stage) at the end of each of the 300 Monte Carlo runs of

SELECTOR and simultaneously highlights the scale of the combinatorial problem. The runs

are sequenced from bottom to top and each run is colour coded with the lowest condition

numbers (an attribute of the lines selected) appearing white and increasing in darkness as

the condition number of the run increases. Run 106 (indicated on the right) has obtained a

condition number of log10 C
0
K = 4:2709, considerably lower than that (log10 C

0
K = 11:55) for

the \all-lines" approach.
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Figure 5.7: The upper plot shows the distribution of emissivity maxima for the lines in

Table 5.3. The lower plot shows the normalised summed emissivities
� dS5000(Te)

�
. These

emission lines all belong to the optimal subset of run 106.
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Table 5.3: Details of the optimal subset of emission lines only. These are the lines belonging

to run 106 that form a kernel matrix with log10 CK = 4:2709. Given are the ions to which

the line belongs, wavelengths � (�A), the number of times the particular line was selected and

the temperature at with the emissivity of the line peaks Tmax
e (K).

Ion � (�A) Count log
10
Tmaxe (K) Ion � (�A) Count log

10
Tmaxe (K)

C III 1175:59 44 4:8 C III 1176:36 62 4:8

Mg VII 431:188 48 5:7 Mg VIII 763:184 50 5:8

Mg IX 439:176 38 5:9 Mg IX 445:980 45 5:9

Mg IX 706:060 46 5:9 Mg X 609:793 108 6:0

Ne VII 559:948 43 5:6 Ne VII 887:279 119 5:6

Si III 1298:94 48 4:7 Si IX 674:650 43 6:0

Si IX 344:951 74 6:0 Si X 287:092 117 6:0

Si X 356:050 70 6:0 Si X 624:729 66 6:0

Si XI 368:378 161 6:1 Si XI 565:578 67 6:1

Si XI 582:886 195 6:1 Si XI 371:609 37 6:1

N III 991:502 140 4:8 O II 539:085 81 4:6

O IV 1397:23 100 5:1 O IV 1399:78 107 5:1

O IV 1404:80 114 5:1 O V 760:227 54 5:3

O V 1213:80 102 5:3 O VI 150:089 133 5:4

Fe XV 171:839 34 6:2 Fe XV 303:048 44 6:2
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5.3. OPTIMISING THE �(NE) INVERSE PROBLEM

Figure 5.8: The regularised inversion (for smoothing parameters (�) varying from 100 to 106)

of line intensities calculated for a model �(Te) function (dashed line). The �(Te) function

recovered (solid line) is clearly more numerically stable than that for the \all-lines" (dot-

dash line) approach in the presence of errors in the line intensities. The line intensities used

in these inversions have normally distributed errors of 15%. Error bars on the solutions are

not given so not to overcrowd the plots.
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5.3. OPTIMISING THE �(NE) INVERSE PROBLEM

or density gradient weighted mean square electron density is a quantity that would be of

great value if it was possible to infer �(ne) reliably from the observed spectra.

We have already seen that the inference of such a distribution requires the solution of

a Fredholm integral equation of the �rst kind. Assuming this time that the plasma volume

under observation is isothermal, say with Te = To = 105 K, we can reduce equation (5.1) for

the total intensity of line l, for emissivity Kl(ne; To) = Kl(ne), to

Il =

Z
ne
Kl(ne) �(ne) dne : (5.15)

This inverse problem is signi�cantly di�erent from that discussed above, primarily because of

the functional behaviour of the line emissivities with electron density. One of the important

features recognised above was that the emissivity of each line as a function of temperature

is well approximated by a Gaussian, however functions Kl(ne) are not. Indeed, the majority

of Kls are `broad', at functions covering the entire density domain of interest ne(10
8 � 1012

cm�3).

Given that the above statement is true we are faced with a di�erent hurdle from that of the

previous section. If the emissivities of the lines are `at' in the functional sense then there will

be an increase in row linear dependence and a corresponding increase in CK compared with

the �(Te) problem. The �(ne) inverse problem is extremely poorly conditioned in comparison.

So, as was the case in the discussion above we have to ask what properties of the line

emissivities will distinguish them from the rest such that the conditioning is improved? Under

the assumption that the emitting volume of solar plasma we are modelling is isothermal (at

some temperature To) we consider the form ofKres(ne) andKint(ne). At all electron densities

Kres(ne) essentially corresponds to the dependence of the radiating element's abundance

relative to that of hydrogen and will decrease monotonically with increasing ne. Again, the

form of Kint(ne) depends on the critical density (see Section 2.2) and can be categorised as

follows :

- At low densities, radiative decay dominates and the emissivity is essentially constant.

- At densities around the critical density (ne �
A12
C23

) the radiative and collisional mechanisms

compete and the result is an emissivity varying as nÆe, where (�1 < Æ < 0) depending on

the atom.

- At high electron densities collision processes dominate and the metastable level will attain

a Boltzmann equilibrium and the emissivity will vary as n�1e
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One main exception to these rules exists. For lines excited from low-lying metastable levels

their emissivities will vary as nÆe (0 < Æ < 1) as the population of the metastable level

becomes comparable to that of the ground level, eventually attaining a Boltzmann where the

emissivity will become constant. Figure 5.9 shows the functional behaviour of the two lines

of N IV discussed previously (765:147; 1486:496 �A) with ne.

Figure 5.9: The emissivities of a resonance line (solid line) and intersystem line (dashed

line) as functions of electron density only. These are for lines of N IV (wavelengths

765:147; 1486:496 �A) calculated for an assumed isothermal plasma of To = 105 K.

Where, in the �(Te) problem, the emissivities were roughly Gaussian functions of temper-

ature and we could easily justify the choice of lines, e.g., by the kernel `evolving' towards the

identity matrix. We now have relatively featureless emissivities. The only real feature they

display are gradients of order ÆnÆ�1e at particular points in the ne domain. Considering this,

even though the emissivities have gradients at speci�c densities they will essentially be scalar

multiples of one another in the `at' regions. This con�rms that there will be a high degree

of linear dependence when (or if) these lines are selected to be in the kernel matrix together.

The degree to which the condition number depends on linear dependence in the kernel

matrices presents a new problem. The matrices become increasingly singular and can have

a number of zero singular values. This is a situation best avoided and requires that we
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5.3. OPTIMISING THE �(NE) INVERSE PROBLEM

re-address the way in which SELECTOR calculates CK . Apart from the condition number

estimate of Cline et al. (1979), there is another way to estimate CK that will give consistent

results and we will use this estimate for these results. A clue is in �gure 5.2. Observe that

the gradient of the singular value distributions for the \all-lines" �(ne) and �(Te) kernels are

di�erent and that the gradient of the �(ne) case is signi�cantly greater. Similarly, we see that

the condition number of the �(ne) \all-lines" kernel is very much higher than that of the �(Te)

case (log10 CK = 17:04 as opposed to 11:55). It is trivial to obtain a algebraic expression for

this \relationship". On �tting a straight line (with equation y = mx+ c) through the logs of

the �rst Q singular values (i.e. the non-zero ones) we see that

C 0
K � 10�mQ (5.16)

with C 0
K = CK exactly when Q =M (M is the number of singular values). On making this

simple addition to the code of SELECTOR and �xing Q = 25 we will again investigate the

results of 300, 5000 generation, runs to identify the set of emission lines that minimises the

condition number of the �(ne) inverse problem. Given that, on performing a SVD on the

�(ne) \all-lines" kernel yields a value of log10CK = 17:05, the gradient method described

above gives log10 C
0
K = 16:02 (for Q = 25).

We are looking for a subset of these lines with considerably lower value of C 0
K . Figure 5.10

shows the results of the ensemble of 300 runs of SELECTOR and identi�es, in a more striking

way, a subset of lines selected more than the mean of 104:436 selection frequency. Similarly,

�gure 5.11 shows the variation of the selection with each run color-coded to correspond to the

condition number estimate C 0
K de�ned by equation (5.16). It is clear that run 285, log10 C

0
K =

9:2116, when compared to that of the \all-lines", contains a subset of the lines which has

a lower value of C 0
K . However, it is also clear from the mottled pattern of �gure 5.11 the

diÆculties of selecting such an optimal set when virtually all sets are very poorly conditioned.

This mottling may be an artifact of the estimate used to calculate C 0
K . Tables 5.4 and 5.5 show

the combination of the results presented in �gures 5.10 and 5.11. Table 5.4 gives the details

of all the lines selected 25% greater than the mean selection frequency. The lines belonging

to the subset of produced by run 285 (�), values of
���dK(ne)

dne

��� and the n�e (the electron density

at which
���dK(ne)

dne

��� is greatest) to help obtain a physical description of why this particular

set of lines is chosen above the others. Similarly, Table 5.5 presents the details of only the

lines selected in run 285 and �gure 5.12 shows the coverage of the selected line emissivities

(normalised), dS5000(ne). One feature very evident in this �gure is the atness of the summed
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Figure 5.10: Monte Carlo histogram of line selection frequency versus line results for 300 runs

of the SELECTOR. This clearly shows the existence of a subset of the 133 lines that have

selection frequencies signi�cantly greater than the mean of 104:436. The axes are labelled as

in �gure 5.5
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emissivities.

Figure 5.11: This �gure identi�es the optimal subsets of the 133 emission lines used (grouped

according to their atomic/ionisation stage) at the end of each of the 300 Monte Carlo runs of

SELECTOR and simultaneously highlights the scale of the combinatorial problem. The runs

are sequenced from bottom to top and each run is colour coded with the lowest condition

numbers (an attribute of the lines selected) appearing white and increasing in darkness as

the condition number of the run increases. Run 285 (marked on the right) has obtained a

condition number of log10 C
0
K = 9:2116, considerably lower than that (log10 C

0
K = 16:02; Q =

25) for the \all-lines" approach.
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Table 5.4: Details of the emission lines selected most at the end of the 300 Monte Carlo 5000

generation runs of SELECTOR. The emission lines included here are those with selection

frequencies 25% greater than the mean of 104:436 counts. The lines indicated by an asterisk

(�) are those belonging to run 285, the set having the minimum value of log10 C
0
K = 9:2116.

Also given are the ions to which the line belongs, wavelengths � (�A),
���dK(ne)

dne

��� (= jK 0j) and

the value of n�e, the value where the emissivity gradient is greatest. Values n�e of 8.8 or 11.2

indicate that maximum occurs between that value and the appropriate limit of the density

domain (8 � log10 ne � 12).

Ion � (�A) Count jK 0j log10 n
�
e Ion � (�A) Count jK 0j log10 n

�
e

C II 1335:66 141 0:1 8:8 C IV 312:420 138 4:0 8:8 �

Mg VI 1190:07 150 0:0 Mg VII 431:188 138 5:1 10:2 �

Mg VIII 436:671 153 1:9 11:2 Mg VIII 782:913 148 2:3 10:5

Mg VIII 789:964 136 8:5 11:2 Mg VIII 772:749 141 4:0 11:2

Mg VIII 355:998 143 8:3 11:2 Mg VIII 352:460 138 2:9 11:2

Mg IX 448:293 138 8:0 11:2 Mg IX 439:176 138 9:3 11:2

Mg X 609:793 140 6:2 9:4 Ne VI 454:072 162 1:7 11:2

Ne VI 562:711 135 0:0 � Ne VI 1006:09 142 0:0

Ne VII 895:175 143 6:8 11:2 � Ne VII 465:220 150 2:6 11:2 �

Ne VII 887:279 136 9:1 8:8 � Ne VIII 770:408 135 3:5 11:2

Si III 1206:49 142 1:9 8:8 � Si III 1296:72 142 0:0

Si III 1298:94 155 0:1 8:8 � Si IX 950:082 139 1:1 11:2

Si IX 692:731 135 6:5 11:2 Si IX 674:650 136 2:8 11:2

Si IX 344:951 141 4:2 11:1 � Si X 611:658 139 1:5 11:2

Si X 624:729 139 2:2 11:2 Si X 649:268 142 3:4 11:2

N III 771:544 136 0:7 9:6 � N III 991:502 153 6:5 10:1

N V 1238:82 161 26:6 10:6 O II 539:085 143 0:0

O III 833:715 139 78:5 10:9 O III 1666:14 145 49:4 10:5

O IV 1397:23 144 3:7 10:1 O IV 625:127 142 13:6 11:1

O IV 624:618 146 6:8 11:1 O IV 1399:78 147 15:8 11:2

O V 761:128 141 0:9 11:2 O V 760:227 148 0:8 11:2

O V 760:446 149 3:9 11:2 O V 758:676 141 1:3 11:2

O V 759:441 144 1:0 11:2 O V 629:732 153 25:1 11:2

O V 1213:80 154 0:0 O V 1218:34 136 3:0 10:3 �

O VI 150:089 141 5:0 11:2 O VI 1031:91 151 0:0
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Table 5.5: Details of the emission lines belonging to run 285, the set having the minimum

value of log10 C
0
K = 9:2116. Also given are the ions to which the line belongs, wavelengths �

(�A),
���dK(ne)

dne

��� (= jK 0j) and the value of n�e, the value where the emissivity gradient is greatest.

Again, values n�e of 8.8 or 11.2 indicate that maximum occurs between that value and the

appropriate limit of the density domain (8 � log10 ne � 12).

Ion � (�A) Count jK 0j log10 n
�
e Ion � (�A) Count jK 0j log10 n

�
e

C III 977:020 117 4:4 9:1 C III 1175:98 130 10:7 9:1

C III 1175:26 121 11:3 9:2 C III 1176:36 133 14:1 9:2

C III 1174:93 129 13:9 9:2 C IV 312:420 138 4:0 8:8

Mg VII 431:188 138 5:1 10:2 Mg IX 441:199 123 6:9 11:2

Mg IX 368:070 132 7:5 11:2 Ne VI 562:711 135 0:0

Ne VII 564:528 134 2:9 11:2 Ne VII 561:378 110 1:8 11:2

Ne VII 895:175 143 6:8 11:2 Ne VII 559:948 131 2:4 11:2

Ne VII 562:993 131 8:7 11:2 Ne VII 465:220 150 2:6 11:2

Ne VII 887:279 136 9:1 8:8 Si III 1298:89 119 0:1 8:8

Si III 1206:49 142 1:9 8:8 Si III 1301:14 132 0:0

Si III 1294:54 125 0:1 8:8 Si III 1298:94 155 0:1 8:8

Si IV 1393:75 118 19:3 8:8 Si IX 344:951 141 4:2 11:1

Si X 356:050 133 3:9 11:2 Si X 292:167 130 5:5 11:2

Si X 611:658 139 1:5 N III 771:900 136 0:7 9:6

O V 762:004 115 1:3 11:2 O V 1218:34 136 3:0 10:3
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Figure 5.12: A plot showing the summed (normalised) emissivities
� dS5000(ne)

�
. These emis-

sion lines all belong to the optimal subset of run 285 given in Table 5.5.

Again, we will seek a regularised solution to the inverse problem to see how stable the

solution of the \all-lines" compares to that using the reduced optimal set of run 285. We

perform the inversion for a range of smoothing parameters � (101�105) to obtain a solution to

equation (5.15). The calculated line intensities for this model �(ne) function have normally

distributed random errors of 5% magnitude. Figure 5.13 clearly shows that the inversion

performed with the optimal subset of lines is signi�cantly more numerically stable than

that obtained when using the \all-lines" approach, especially over the range of smoothing

parameters used.

The optimal value of C 0
K is signi�cantly higher than that of the previous section, as

would be expected from inspection of �gure 5.2, but because of the estimate used may be

slightly inaccurate. The high value of C 0
K alone would indicate why �(ne) is not a `popular'

diagnostic of the emitting plasma (although discussed at length in Almleaky et al. 1989 and

Brown et al. 1991); the numerical instability and non-uniqueness of the inferred solution

and would make derivation of the physical mechanisms for the radiating plasma useless. On

inspection of �gure 5.13 such an argument is further reinforced, considering especially that

the calculations presented were made using line intensities with only 5% errors. This would
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Figure 5.13: The regularised inversion (for smoothing parameters (�) varying from 101 to

105) of line intensities calculated for a model �(ne) function (dashed line). The �(ne) function

recovered (solid line) is clearly more numerically stable than that for the \all-lines" approach

in the presence of errors in the line intensities. The line intensities used in these inversions

have normally distributed errors of only 5%.
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be an optimistic lower bound on the error estimate. This means that the outlook is bleak as

these inferred solutions are possibly the best we can recover from this data. These numerical

problems still occur even when using the optimal set of lines. Hence the reason why many

density diagnostics are acquired using the line-ratio method mentioned in Chapters 2 and 4

and not using �(ne).

5.4 Discussion

For the trials shown we have established that, for the set of emission lines in the SOHO

CDS/SUMER wavelength range, there are subsets which minimised the conditioning prob-

lems associated with the inference of plasma characteristic distributions �(Te) and �(ne).

Also, these subsets of emission lines which, when used to infer the emitting plasma structure

will yield results of a less ambiguous nature.
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Chapter 6

Summary and future work

This Chapter

In this chapter we draw all our arguments and threads together to show that the recovery of the

solar physical structure from UV/EUV emission line spectra is no easy task and must be treated

with due care and attention.

The importance of obtaining good (useable) distributions for solar plasma diagnostic

quantities is paramount if we are to unlock the mysteries surrounding the coronal, chromo-

spheric and are heating problems (reviewed recently; Zirker 1993). The ability to support

observationally certain mechanisms relative to others requires that we have, at least, an

unique model for the emitting plasma. In this thesis we have developed, using new and what

some may class as unconventional, methods with an open-minded perspective to do just that.

We have used an approach that determines the underlying plasma characteristics to a higher

degree of numerical stability and uniqueness than previously obtained. The argument of this

thesis from the outset can simply be expressed as (McIntosh 1998 - Oral Presentation)

\If we are to learn anything about the solar atmosphere from the SOHO and similar

missions we have to use data extraction methods which are most robust and accommo-

date all the errors likely to occur. Such methods will, in return, increase the reliability

and uniformity of results inferred using these methods."

We have systematically introduced construction methods for inferring unique distributions

from observed UV/EUV optically thin line emission spectra. In the main, particular emphasis

is placed on the wavelength range observable with the Coronal Diagnostic Spectrometer (CDS;
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150 - 800 �A) and Solar Ultraviolet Measurement of Emitted Radiation (SUMER; 780 - 1610

�A) instruments in the SOHO payload.

The vast majority of the technical details required to understand the work contained in

this thesis are laid down in Chapter 2. In Section 2.1 we gave a discussion of the general

details to aid in the understanding, perception and solution of inverse problems. We noted

that it was important to formulate the inverse problem correctly and, for the solar inverse

problem considered predominantly in this thesis, we require a basic knowledge of the atomic

mechanisms of highly ionised species present in the solar atmosphere. Theoretical knowledge

of the atomic \zoo" we call the Sun allows us to diagnose the current state of the emitting

plasma structure and, in Section 2.2, we discussed these diagnostics, their formulation and

possible errors resulting in their use.

Chapter 3 introduced, at an elementary level, the basic framework from which much of

the argument of this thesis is constructed. There we introduced the terminology, mecha-

nism and adaptability of Genetic Algorithms (GA). As a test of the exibility of a GA we

apply it as a method for obtaining `unbiased' decompositions of emission line spectra. We

have demonstrated that a GA is a robust, and e�ective, optimisation method for navigating

potentially hazardous solution/parameter spaces and that Ga-GA (the Gaussian �tting GA)

demonstrated the ease with which a priori constraints can be applied to the data under anal-

ysis. In addition to the ease with which constraints can be placed on the data under analysis

we have provided evidence that Ga-GA provides a more accurate spectral decomposition (es-

pecially at the limit of instrumental resolution) than standard decomposition algorithms. It

is also clear from the analysis presented therein that there is no such thing as a free lunch;

any advance in accuracy must be accounted for by signi�cant increase in the time taken to

obtain that accuracy and would limit Ga-GA's e�ectiveness as an on-line analysis tool, e.g.

for analysing simple line pro�les (single or double) in tokamac plasmas. However, as is true

in many astronomical cases, the time taken to run the algorithm is irrelevant compared to the

accuracy required of the decomposition. As a thought example consider the decomposition of

a SUMER quiet Sun spectrum, like that presented in �gure 3.8. A mis-calculation of the line

width or shift relative to the `known' laboratory wavelength would be enough to completely

discount the \nanoare" model of Parker (1988) and the magnitude of observed downows

in the transition region emission lines (Wikstol et al. 1997; Wikstol et al. 1998) of O IV and

S IV (1398 � � � 1402 �A) that can be inferred from these measurements.
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Section 4.1 endeavours to break down the conceptual walls that have developed since the

dawn of space borne UV/EUV spectroscopy in the early 1960s. Here we make clear reference

to the two schools of thought that presently exist that are vying for `control' of this particular

avenue of solar physics; each professing the correctness of their approach.

The earliest (e�ectively zeroth order) `line ratio' approach actually harks back to the work

on planetary nebulae by Menzel et al. (1941). It uses a zeroth order approach to obtain `mean'

values of the observational spectroscopic quantities ne and Te. These estimation methods

have been shown to be highly ambiguous (Almleaky et al. 1989) because they assume that

the emitting plasma volume (solid angle) subtended by the spectrometer slit is isothermal, or

homogeneous in ne, or both. This is clearly not a valid assumption as can be seen by looking

at any image of the Sun's atmosphere. It does however allow order of magnitude estimates

of ne and Te to be made within the degree of uncertainty in the measurement and within

the quality of the theoretical atomic coeÆcients used. Although, as noted in Chapter 4, the

addition to the analysis of more line ratios can establish limiting values for ne and Te of the

emitting volume (Brown et al. 1991).

The �rst order approach, to obtain distributions of these temperatures and densities in the

emitting volume, was �rst expressed by Pottasch (1964) but generalised by Craig & Brown

(1976) to account for the multiple regions of di�ering temperature (and density) along the line

of sight in the emitting volume. This second, di�erential emission measure (DEM), approach

has been well documented as a more rigorous, in a mathematical sense, method of obtaining

such characteristic distributions. The identi�cation of the DEM approach as requiring the

solution of a Fredholm integral equation for the relation governing the formation of noisy

emission line intensity data (Craig & Brown 1976) was made following the work of Je�eries

et al. (1972a, b). Recently however, Judge et al. (1997) stated that this `inverse' DEM

method is also fraught with instability caused by uncertainties in the atomic parameters

required for the calculation and not just the numerical diÆculties involved in performing

the inversion itself (Craig & Brown 1986) for random data noise. We have addressed both

of these approaches, aspects of error sources and also we have been able to produce direct

relationships between a set of mean spectroscopic quantities and the corresponding DEMs of

temperature (�(Te); Section 4.1.1), density (�(ne); Section 4.1.2) and the generalised form of

the bivariate DEM (�(ne; Te); Section 4.1.3) for situations in which all these quantities are

meaningfully de�ned. These relations show that the road linking the two schools of thought

is not as arduous as may be inferred from the current literature. Indeed, we have shown that
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the methods are precisely equivalent.

It was soon clear that the main bene�ts of the line ratio like approach coupled with

the full mathematical rigour of solving the Fredholm integral equation would give a means

of avoiding the systematic errors in the atomic calculations detailed in Section 2.2.3 and

obtaining meaningful characteristic distributions. This alone is a great advance since the

e�ect of the line ratio method on these irregularities circumvents the instability imposed on

the inferred solution of the direct integral inversion (Judge et al. 1997). Section 4.2 sees the

introduction of the Ratio Inversion Technique (RIT) and in Section 4.2.2 we have discussed,

in detail, how this GA based routine solves the highly non-linear optimisation problem

�2 = X2(Robs; Rcalc) + ��(f(se))

with respect to a \smooth" solution f(se) (occurring in the calculation for Rcalc, the line

ratios generated to match the observed ratios Robs). We have shown in the sections following

Section 4.2.2 that the RIT provides a solution of unprecedented stability in the recovery

of the univariate plasma DEM functions �(Te) and �(ne) compared to a standard inversion

algorithm (cf. the GUIPS routines of Section 2.1). The value of this result is most strongly

emphasised when considering the realistic estimates of uncertainties in the line emissivities

as large as (� 100%). It is clear then that if the solution is stable to errors in the atomic

calculations used, as well as being numerically stable, that we can place greater store in the

resulting analysis of those DEM functions to form atmospheric models and the like from the

UV/EUV line spectra.

It is all well and good to test the RIT in the ideal conditions described in Chapter 4.

However, Section 4.4 places a new obstacle to test the `initiative' of the RIT. Here we present

results of the RIT operating on spectra obtained by the SERTS-89 rocket. The wavelength

coverage of the SERTS spectra is 170 � 450 �A and this particular active region spectrum

has been studied in detail by Thomas & Neupert (1994) and more recently by Lanzafame

et al. (1998). We demonstrated that the RIT uncovers features in the various �(Te) functions

not observed in these previous studies and that our proposed methods of scaling, smoothing

and choice of the optimal smoothing parameter are accurate. These results highlight the

basic inherent problem mentioned above, the need for a uniform approach (same data - same

DEM) to these inverse problems like that discussed in Harrison & Thompson (1991). Also

highlighted is the basic ill-posedness of the DEM inverse problems: many forms of solution �t

the data and we must acknowledge now that we cannot discount any. Indeed, it may well be
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that all we can achieve with any degree of certainty is to put a vague boundary in the region

of the DEM solution spaces where we would expect possible DEM functions for various solar

regions (active and quiet) to lie.

Chapter 5 sees a slight change of tack. We investigated a question �rst posed in Craig &

Brown (1976)

\What makes particular UV emission lines better than others in terms of recovering

the plasma source function ?"

Again, we have used a GA based tool to investigate the factors controlling the numerical

stability of inverse problem solutions in the presence of data noise, i.e. limiting the e�ect of

poor conditioning. Essentially we have isolated subsets of emission lines that substantially

reduce the response of the integral inversion to considerable data noise. In Section 5.2,

for �(Te), we reduced the degree of poor conditioning by minimising the condition number

from 1011 to � 104 by careful choice of the emission lines we use in the inversion process

itself. Likewise, in Section 5.3 we have isolated the corresponding set of emission lines for

the univariate �(ne) inverse problem which reduce the condition number from 1017 to � 109.

From these results we see that careful consideration of the lines analysed can yield much more

numerically stable solutions to a standard DEM inversion.

To summarise, we have clearly shown that the methods employed in this thesis establish a

greater degree of uniqueness and numerical stability in the inferred DEM functions which is a

positive contribution, particularly in terms of the further interpretation of solar spectroscopic

data in uncovering the true mechanism(s) responsible for regenerating and heating the upper

solar atmosphere.

6.1 Future Work

The importance in terms of atmosphere modelling make the discussion of this thesis very

timely. There are many avenues left to explore with the methods discussed within but

particular e�ort should be made to extend the SELECTOR and RIT methods to allow the

further study of �(ne; Te) which is the \holy grail" of UV inverse spectroscopy, though,

because of its physical abstraction, it is the principal subject of only four pieces of literature

to date, as far as the author is aware.

Extension of the work presented in Chapters 4 and 5 to study the bivariate DEM �(ne; Te)

will revolve around the re-indexing (transformation) performed in Judge et al. (1997) and
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used in Section 4.1.3. The operation of the RIT in recovering the functional form of �(ne; Te)

will be limited by two factors, they are:

1. The inversion mesh will be limited in dimension because when the parameter string used

to describe the solution (30 � 30 = 900 elements for a 30 by 30 mesh) is far too long for

analysis as a gene string or genotype. This will certainly require greatly enhanced genetic

operators (see the discussion of Section 3.4) to proceed.

2. The use of this mesh itself poses another problem which may indeed reduce the pressure

on point 1. The number of parameters in the calculation can be limited by choosing a

bivariate functional form for �(ne; Te) which will allow us to form a series expansion with

the parameters in this case being the expansion coeÆcients. However, the identi�cation

of such a functional basis is not easy.

The discretisation of the �(ne; Te) inverse problem is diÆcult for SELECTOR to handle since

we are still only choosing the optimal set of emission lines from the condition number of the

resulting kernel matrix (i.e. does it translate linearly from them�n case to them�n�k case

even though used in Judge et al. 1997 ?). The main diÆculty in this case is actually assessing

the validity of the condition number estimate used. However, expansion of SELECTOR for

the bivariate inverse problem may help provide the necessary physical link between lines that

are \good" in the temperature (�(Te)) case but do not feature good density (�(ne)) sensitivity

or vice versa.

Also great attention must be paid to the smoothing functional used for the RIT solution

of the univariate DEM inverse problems. Implementation of the `data adaptive smoothing'

approach of Thompson (1990, 1991) is another possible advance for the RIT. A working

knowledge of the smoothing functional is critical to understand the amount of erroneous

variation present in any possible solution. In other words, we want to be able to determine

regions in the Te and ne domains where the smoothing functional is `in control' and to make

sure that any oscillatory variation in the recovered solution is not an artefact of the inversion

process itself. This is a truly diÆcult task as the reader, by now, will appreciate. We,

however, believe that it is possible to couple the analysis of the RIT with error bars that not

only reect possible errors in the line emissivities but the emissivity `coverage' (at all points

in the domain). A similar analysis has been performed in Chapter 5 and may lead the way to

obtaining a clear result on this front. This should help us to decide whether or not possible

variations in the recovered DEM functions are below the numerical and coverage resolution
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limits and hence spurious. An estimate of this e�ect may be given, simply, by considering an

error bar �Æf(sej ) in the DEM function whose amplitude depends on the contribution from

emissivity Ki(sej ) to each data error Ægi for a point sej in the se (ne of Te) domain like

Æf(sej ) �

MP
i=1

Ægi

N
MP
i=1

Ki(sej )

(6.1)

whereM and N are the number of observations and domain discretisation points respectively.

This ad-hoc relationship corresponds to a lower weighting of Æf(sej ) where the kernel coverage

is large and conversely a higher weighting when the region of the se domain is poorly sampled

in the kernels.

To complete this brief analysis of possible applications of the methods contained in this

thesis we must address some important issues. These primarily concern the formulation and

application of DEM-like techniques when used to analyse UV/EUV spectra from dynamic or

clearly non-equilibrium plasmas of both active and quiet regions of the Sun. In Chapter 2

we stated explicitly the conditions under which we may formulate the equation of total line

intensity as a DEM integral equation (see, e.g. equation 2.68). We have to take it for granted

that the plasma is optically thin, in ionisation equilibrium, have constant atomic abundances

and be in a steady state with all the lines observed being formed in the same emitting volume.

Clearly, in regions of the solar atmosphere some, if not all, of these assumptions will break

down, as any image will show (see, e.g., Golub & Pasacho� 1997), and such cases are discussed

in Judge et al. (1995) and Chae et al. (1997). The question that must be asked then is

\Can we formulate a DEM-type integral equation for the emitting plasma regardless of

its non-equilibrium structure ?"

Well, given that we have established the RIT as an useful diagnostic technique for obtaining

DEM functions, possibly the best we can do will involve taking continuous (long temporal To

duration; cf. �gure 6.1) observations of a region of the Sun and analyse for some integrated

time scale to even out the uctuations in intensity. This is done in practice but there has

been no analysis of a time variation in the DEM functions over a much shorter time scale

(i.e. using time series like those in �gure 6.1 and performing the inversion for segments with

t� To) than those often presented (this is discussed in Chapter 5.6 of Mariska 1992 for the

solar transition region). The object of such a study is the correlation between possible DEM

uctuations and brightenings/dimmings of the observed line intensities. Such a correlation
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will also help locate particular regions of ne and Te (through �(Te) and �(ne)) where heating

events are occurring and when.
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Figure 6.1: SUMER time-series spectra for lines of C III (1175 �A; upper plots) and O VI

(1037 �A; lower plots) obtained on October 11th 1996. The intensity (left) and velocity (right)

as functions of position along the spectrometer slit and time. Because these lines are formed

at slightly di�erent temperatures, 9�104 K and 4�105 K respectively, the di�erent behaviour

in both spatial and temporal domains of the solar atmosphere is clear over the three thousand

seconds of observing time. This �gure appears courtesy of Dr. V. Hansteen.
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Appendix A

PIKAIA driven Genetic Algorithms

In the following sections we present the full Fortran-77 codes for the PIKAIA (Charbonneau

& Knapp 1996) Genetic Algorithm (GA) drivers employed in this thesis. The code for the

Gaussian �tting GA (GA-GA) of Chapter 3 is included in Appendix A.1. Also, the code for

the Ratio Inversion Technique (RIT), discussed in Chapter 4, is included in Appendix A.2.

A.1 The Gaussian �tting Genetic Algorithm (Ga-GA) code

program Ga-GA

c -------------

c=============================================================================

c

c Driver for Gaussian Spectral Decomposition with a Genetic Algorithm

c

c Scott W McIntosh (V1.01 6 Apr 1998; scott@astro.gla.ac.uk)

c

c Use : Ga-GA <data_file> <iseed> <nc>

c

c data_file input data file [xxx.dat]

c iseed random number generator seed (positive) [7187]

c nc effective number of gaussian components [1-10]

c

c I/O Units

c

c 1 input data xxx.dat

c 23 final phenotype xxx_phenotype.out

c 24 final parameters xxx_parameter.out

c 30 fitness of each generation xxx_fit_gen.out

c 31 parameters at each generation xxx_par_gen.out

c

c

c=============================================================================

implicit none

integer*4 nc1,iodata,iopheno,ioparam,io30,io31,

+ iseed,ndata,npar,nt

parameter (iodata=1,iopheno=23,ioparam=24,io30=30,io31=31,npar=3)

character data_file*80,instring*80

include 'comp.inc'

np1max = np_max

nc1max = nc_max
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c Read inputs

call getarg(1,instring)

write(data_file,900) instring

call getarg(2,instring)

read(instring,*) iseed

call getarg(3,instring)

read(instring,*) nc1

write(*,*) ' '

write(*,*) ' Input data file : ', data_file(1:30)

write(*,*) ' Iseed : ', iseed

write(*,*) ' Nb of components : ', nc1

nt = nc1 * npar

nceff = nc1

npeff = npar

c First, initialize the random-number generator

call rninit(iseed)

c I/O files and units

call init_files(iodata,iopheno,ioparam,io30,io31,data_file)

c Read input data

call read_data(iodata,ndata)

type *, ' data read in : ', iodata, ndata

c Set up the control variables for GA

call set_control_parameters

type *, ' ctrl OK '

c Set up the effective arrays, with proper dimensions,

c and call PIKAIA, print results

call GA(nt,nc1,npar,ioparam,iopheno,ndata)

c Close I/O units

call close_units(ioparam,iopheno,io30,io31)

900 format(a80)

stop' *** End of GaGA *** '

end

c*************************************************************

subroutine read_data(iodata,n_data)

c -----------------------------------

c Use: Reads in input data

c

implicit none

integer*4 iodata,i,n_data,nd,nd1

integer*4 ndata_max

parameter (ndata_max=2000)

real*4 data(ndata_max),sigma(ndata_max)

real*4 sigma_min, data_max

common /data/ data,sigma,nd1

common /props/ sigma_min, data_max, nd

c Read in the number of data points

read(iodata,*) n_data

nd = n_data

nd1 = nd

if (n_data.gt.ndata_max) then

type *, ' *** Error : n_datam is too small : ', ndata_max

type *, ' *** n_data read in is : ', n_data

type *, ' *** Change value of n_datam in gaga.inc '
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stop' *** Execution of GaGA stopped *** '

end if

c Read in the observed data points and their errors

read(iodata,*) (data(i),sigma(i),i=1,n_data)

data_max = -1.0e10

do i=1, n_data

data_max = max(data_max,data(i))

end do

sigma_min = 0.01 ! in pixel units

c Close file

close(iodata)

return

end

c*************************************************************

subroutine init_files(iodata,iopheno,ioparam,io30,io31,data_file)

c -----------------------------------------------------------------

c Use: Initialises the I/O files

c

implicit none

integer*4 iodata,iopheno,ioparam,io30,io31,io30a,io31a

character data_file*80,pheno_file*80,param_file*80,

+ fio30*80,fio31*80

common /io/ io30a,io31a

io30a = io30

io31a = io31

pheno_file = data_file(1:3)//'_phenotype.out'

param_file = data_file(1:3)//'_parameter.out'

fio30 = data_file(1:3)//'_fit_gen.out'

fio31 = data_file(1:3)//'_par_gen.out'

c IN Input data file

open(unit=iodata,file=data_file,status='old')

c OUT Final phenotype

open(unit=iopheno,file=pheno_file,status='unknown')

c OUT Final parameters

open(unit=ioparam,file=param_file,status='unknown')

c Evolution in action :

c

c OUT Store global fitness of each generation

open(io30,file=fio30,status='unknown')

c OUT Store parameters of each generation

open(io31,file=fio31,status='unknown')

return

end

c*************************************************************

subroutine set_control_parameters

c ---------------------------------

c Use: Set the control parameters. Utilises the flexibility of

c PIKAIA

c
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implicit none

integer*4 mc,i

parameter (mc=12)

real*4 ctrl(mc)

common /control/ ctrl

c Initialise to default values for security

do i=1,mc

ctrl(i) = -1

end do

c Number of individuals in a population

ctrl(1)=50 ! 100 default, 128 maximum

c Number of generations

ctrl(2)=500 ! 500 default

c Number of genes / significant digits in chromosomal encoding

ctrl(3)=6 ! 32-bit

c Crossover probability

ctrl(4) = 0.85 ! must be less than one

c Mutation mode

c 1 Uniform mutation, constant rate

c 2 Uniform mutation, variable rate based on fitness

c 3 Uniform mutation, variable rate based on distance

c 4 Uniform or creep mutation, constant rate

c 5 Uniform or creep mutation, variable rate based on fitness

c 6 Uniform or creep mutation, variable rate based on distance

ctrl(5)=5

c Initial mutation rate

ctrl(6)=0.005 ! 0.005 default

c Minimum mutation rate

ctrl(7)=0.0005 ! >0 (0.0005 default)

c Maximum mutation rate

ctrl(8)=0.25 ! <1 (0.25 default)

c Relative fitness diferential : 0/none 1/maximum (default)

ctrl(9)=1.

c Reproduction plan 1 : Full replacement of the generation

c 2 : Steady-state, replace random

c 3 : Steady-state, replace worst (default)

ctrl(10)=1.

c Elitism flag 0/1 : off(default)/on [only for ctrl(10)=1 or 2

ctrl(11)=1.

c

c Output 0/1/2 : None(default)/Minimal/Verbose

ctrl(12)=2.

return

end

c*************************************************************

subroutine write_comp_gen(igen,n1,x,io31)

c -----------------------------------------

c Use: Writes to the `running' log

c

implicit none

integer*4 n1,i,io31,igen,k,nc1,np1

real*4 x(n1)

include 'comp.inc'

np1 = npeff

nc1 = nceff
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call rescale(nc1,np1,x,n1)

if (igen.ne.0) then

write(io31,*) igen, nc1, np1 ! generation, Nb components

else

write(io31,*) ' Final generation (width in channels)', nc1, np1

end if

do i=1,nc1

c write(io31,910) (comp(i,k),k=1,np1) ! parameters

write(io31,910) comp(i,1),comp(i,2),1.0/sqrt(comp(i,3))

end do

910 format(8(g8.3,2x))

return

end

c*************************************************************

subroutine close_units(ioparam,iopheno,io30,io31)

c -------------------------------------------------

c Use: Confirms closure of all I/O files

c

implicit none

integer*4 ioparam,iopheno,io30,io31

close(ioparam)

close(iopheno)

close(io30)

close(io31)

return

end

c*************************************************************

subroutine GA(ntot,nc,npar,ioparam,iopheno,ndata)

c -------------------------------------------------

c Use: Main subroutine that calls PIKAIA

c

implicit none

integer*4 nc,npar,ntot,istatus,ioparam,iopheno,ndata

integer*4 i,ntt,ndt

parameter (ntt=10*3,ndt=2000)

real*4 profile(ndt),x(ntt)

real*4 fitness_function,ctrl(12),f

external fitness_function

common /control/ ctrl

if (ntot.gt.ntt .or. ndata.gt.ndt) then

type *, ' Bad dimensions for arrays : ntt ndt :',ntt,ndt

type *, ' ntot ndata : ', ntot, ndata

stop' *** EXIT ***'

end if

do i=1,ntot

x(i) = 0.0

end do

c Now call pikaia

type *, ' calling pik with ntot = ', ntot

type *, ' ctrl ', ctrl

call pikaia(fitness_function,ntot,ctrl,x,f,istatus)

c Print the results

write(*,*) ' status : ', istatus

write(*,*) ' params : ', x

write(*,*) ' fitness: ', f

write(*,901) ctrl

c Compute the final phenotype and print the final parameters

call write_comp_gen(0,ntot,x,ioparam)

175



A.1. THE GAUSSIAN FITTING GENETIC ALGORITHM (GA-GA) CODE

call get_phenotype(nc,npar,profile,ndata)

do i=1,ndata

write(iopheno,*) profile(i)

end do

901 format(' ctrl : ',6(f11.6,1x)/10x,6(f11.6,1x))

return

end

c=============================================================

c

c These are added at the compilation stage

c

c include "fit.f" ! contains fitness_function

c include "pikaia.f" ! contains latest version of pikaia

c

c=============================================================

c*************************************************************

c*************************************************************

real function fitness_function(n1,x)

c ------------------------------------

c Use: Fitness function implemented by Ga-GA routine.

c Input: n1 -- No. of parameters

c x -- genotype array of n1 elements

c

implicit none

integer n1,i,j,nc1,np1

real x(n1),sum

integer*4 ndata_max, n_data

parameter (ndata_max=2000)

real*4 data(ndata_max),sigma(ndata_max)

real profile(ndata_max)

include 'comp.inc'

common /data/ data,sigma,n_data

c----------0. initialize parameters and phenotype profile

nc1 = nceff

np1 = npeff

do i=1,nc1

do j=1,np1

comp(i,j)= 0.0

end do

end do

do i=1,n_data

profile(i)=0.

end do

c----------1. rescale input variables:

call rescale(nc1,np1,x,n1)

c----------2. compute phenotype :

call get_phenotype(nc1,np1,profile,n_data)

c----------3. compute reduced chi**2 = {1/[Ndata-(N+1)]} \sum_i [(C-O)/s]_i^2

sum=0.

do i=1,n_data

sum=sum+ ((profile(i)-data(i))/sigma(i))**2.

end do

sum=sum/float(n_data-(n1+1))

c----------4. define fitness

fitness_function=1./sum
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return

end

c*************************************************************

subroutine get_phenotype(nc,n_param,profile,n_data)

c ---------------------------------------------------

c Use: Takes genotype and computes the phenotype profile

c

implicit none

integer n_param,n_data,i,j,nc

real amp,wid,pos,profile(n_data)

include 'comp.inc'

real genotype

external genotype

do i=1,n_data

profile(i) = 0.

end do

do i=1,nc

pos = comp(i,1)

amp = comp(i,2)

wid = comp(i,3)

do j=1,n_data

profile(j)=profile(j)+genotype(pos,amp,wid,j)

end do

end do

return

end

c*************************************************************

real function genotype(pos,amp,wid,j)

c -------------------------------------

c Use: Computes Gaussian phenotype value at channel i

c for specific genotype

implicit none

integer j

real pos,amp,wid

genotype = amp*(exp(-wid*((float(j)-pos)**2.)))

return

end

c*************************************************************

subroutine rescale(nc,np,x,n1)

c ------------------------------

c Use: Rescales each parameter in the genotype for the

c position, amplitude, & width and store

implicit none

integer nc,np,nd,n1,i

real x(n1)

real sigma_min, data_max, cte1

include 'comp.inc'

common /props/ sigma_min, data_max, nd

cte1 = 1.0/(sigma_min*sigma_min)

c comp(*,np) nd=N_data

c np

c 1 pos : 1 - N_data pos = 1 + x*(N_data-1)

c 2 amp : 0.0 - max(data) amp = x*max(data)

c 3 wid : 1/sm**2 - 1./N_data**2

c [wid = 1/sigma**2] sm = \sigma_min \sim 0.5

do i=1,nc
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comp(i,1) = 1.0 + x((np*i)-(np-2))*(float(nd-1))

comp(i,2) = x((np*i)-(np-1))*(data_max*2.)

comp(i,3) = (1.0/(x(np*i)*nd))**2

end do

return

end

c*****************************************************************

c*****************************************************************

A.2 The Ratio Inversion Technique (RIT) code

program RIT

c -----------

c*****************************************************************

c=================================================================

c

c Driver for Ratio Inversion Technique with a Genetic Algorithm

c

c Scott W McIntosh (V1.04 6 Jun 1998; scott@astro.gla.ac.u

c

c Usage : RIT <data> <seed> <ngen> <parameters>

c

c data line ratios

c seed random number generator seed

c ngen number of generations

c parameters number of discretisation points

c

c=================================================================

implicit none

integer*4 par_max,rcdata,ldata,kdata,rdata

integer*4 iodata,iopheno

parameter (par_max=50,rcdata=7,ldata=9)

parameter (iodata=2,iopheno=23,kdata=3,rdata=5)

integer n, iseed, status, ngen, npar

real ctrl(12), x(par_max), f, rat_chi

character data_file*80,instring*80

external rat_chi

common /control/ ctrl

c Read inputs

call getarg(1,instring)

write(data_file,900) instring

call getarg(2,instring)

read(instring,*) iseed

call getarg(3,instring)

read(instring,*) ngen

call getarg(4,instring)

read(instring,*) n

900 format(a80)

write(*,*) ' '

write(*,*) ' Input data file : ', data_file(1:30)

write(*,*) ' Iseed : ', iseed

write(*,*) ' Generations : ', ngen

write(*,*) ' Parameters : ', n

c First, initialize the random-number generator

call start(npar)

call rninit(iseed)

c I/O files and units

call init_files(iodata,iopheno,kdata,rdata,rcdata,ldata,data_file)
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c Get start-up parameters

call finit(iodata,kdata,rdata,ldata)

c Set up the control variables for GA

call set_control_parameters(ngen,npar)

type *, ' ctrl OK '

c

call pikaia(rat_chi,n,ctrl,x,f,status)

c

c Print the results

write(*,*) ' status: ',status

write(*,*) ' x: ',x

write(*,*) ' f: ',f

write(*,20) ctrl

20 format( ' ctrl: ',6f11.6/10x,6f11.6)

call output(iopheno,rcdata,n,x)

end

c*************************************************************

subroutine set_control_parameters(ngen,npar)

c ---------------------------------

c Use: Set the control parameters. Utilises the flexibility of

c PIKAIA

c

implicit none

integer*4 mc,i,ngen,npar

parameter (mc=12)

real*4 ctrl(mc)

common /control/ ctrl

c Initialise to default values for security

do i=1,mc

ctrl(i) = -1

end do

c Number of individuals in a population

ctrl(1)=npar ! 100 default, 128 maximum

c Number of generations

ctrl(2)=ngen ! 500 default

c Number of genes / significant digits in chromosomal encoding

ctrl(3)=6 ! 32-bit

c Crossover probability

ctrl(4) = 0.85 ! must be less than one

c Mutation mode

c 1 Uniform mutation, constant rate

c 2 Uniform mutation, variable rate based on fitness

c 3 Uniform mutation, variable rate based on distance

c 4 Uniform or creep mutation, constant rate

c 5 Uniform or creep mutation, variable rate based on fitness

c 6 Uniform or creep mutation, variable rate based on distance

ctrl(5)=4

c Initial mutation rate

ctrl(6)=0.005 ! 0.005 default

c Minimum mutation rate

ctrl(7)=0.0005 ! >0 (0.0005 default)

c Maximum mutation rate

ctrl(8)=0.25 ! <1 (0.25 default)

c Relative fitness diferential : 0/none 1/maximum (default)

ctrl(9)=1.
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c Reproduction plan 1 : Full replacement of the generation

c 2 : Steady-state, replace random

c 3 : Steady-state, replace worst (default)

ctrl(10)=1.

c Elitism flag 0/1 : off(default)/on [only for ctrl(10)=1 or 2

ctrl(11)=1.

c

c Output 0/1/2 : None(default)/Minimal/Verbose

ctrl(12)=0.

return

end

c*************************************************************

subroutine init_files(iodata,iopheno,kdata,rdata,rcdata,

+ ldata,data_file)

c -----------------------------------------------------------------

c Use: Initialises the I/O files

c

implicit none

integer*4 iodata,iopheno,kdata,rdata,rcdata,ldata

character data_file*80,pheno_file*80

character kern_file*80,r_calc*80,th_err_file*80

pheno_file = 'fhat.dat'

r_calc = 'rat_calc.dat'

kern_file = 'kern.dat'

th_err_file = 'error_dat/th_err.dat'

c IN Input data file

open(unit=iodata,file=data_file,status='unknown')

c IN Input kernel file

open(unit=kdata,file=kern_file,status='unknown')

c IN Input th_err file

open(unit=rdata,file=th_err_file,status='unknown')

c IN Input th_err file

open(unit=ldata,file='ratio_list.dat',status='unknown')

c OUT Final phenotype

open(unit=iopheno,file=pheno_file,status='unknown')

c OUT Recalculated ratios

open(unit=rcdata,file=r_calc,status='unknown')

return

end

c*************************************************************

subroutine start(npar)

c ----------------------

c Use: Reads the initialisation file `ratio_start.in'

c

implicit none

integer ndata,npar,smooth,nrat

double precision lam,scale

common/misc/ lam,scale,ndata,smooth,nrat

open(1,file='ratio_start.in',status='old',form='formatted')

rewind(1)

read(1,*) ndata,nrat,npar,lam,scale,smooth

close(1)

write(*,2)

2 format(/1x,60('*'),/,

+ ' *',13x,'Genetic Algorithm Initialisation',13x,'*',/,

+ 1x,60('*'),/)

write(*,*) 'Number of data points :',ndata
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write(*,*) 'Number of line ratios :',nrat

write(*,*) ' Smoothing parameter :',lam

write(*,*) ' Scaling parameter :',scale

if (smooth.eq.0)

+ write(*,*) ' Smoothing Order: Zeroth'

if (smooth.eq.1)

+ write(*,*) ' Smoothing Order: First'

if (smooth.eq.2)

+ write(*,*) ' Smoothing Order: Second'

if (smooth.eq.3)

+ write(*,*) ' Using MaxEnt Smoothing'

write(*,3)

3 format(/1x,60('*'),/)

end

c*************************************************************

subroutine finit(iodata,kdata,rdata,ldata)

c ------------------------------------------

c Use: Read in all the initial data

c

implicit none

integer*4 iodata,kdata,rdata,ldata

integer ndata_max,nrat_max,d_max

parameter (ndata_max=100, nrat_max=100, d_max=50)

integer i,j,rl(nrat_max),ndata,smooth,nrat

double precision r(nrat_max),k(d_max,nrat_max),sigth(nrat_max)

double precision scale,sigd(nrat_max),lam

common/data/ r,k,rl,sigth,sigd

common/misc/ lam,scale,ndata,smooth,nrat

c ---- Read line ratios (R_{obs}) and observational errors

read(iodata,*) (r(i),sigd(i),i=1,nrat)

close(iodata)

c ---- Read Kernels

do 10 i=1,(2*nrat)

read(kdata,*) (k(j,i),j=1,ndata)

10 continue

close(kdata)

c ---- Read theoretical uncertainties

read(rdata,*) (sigth(i),i=1,nrat)

close(rdata)

c ---- Read in the ratio pairings (format --> top bottom)

read(ldata,*) (rl(i),i=1,2*nrat)

close(ldata)

do 11 i=1,2*nrat

rl(i)=rl(i)+1

11 continue

return

end

c*************************************************************

subroutine output(iopheno,rcdata,n,x)

c -------------------------------------

c Use: Output the final solution and their line

C ratios (R_{calc})

c

implicit none

integer*4 iopheno,rcdata

integer*4 ndata_max,nrat_max,d_max

parameter (ndata_max=100, nrat_max=100, d_max=50)

integer ndata,i,j,bid,tid,n,nrat,smooth

integer rl(nrat_max)

double precision y(ndata_max),top(ndata_max),bot(ndata_max)

double precision k(d_max,nrat_max),rc(nrat_max),r(nrat_max)

double precision lam,scale,sigd(nrat_max),sigth(nrat_max)
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real x(n)

common/data/ r,k,rl,sigth,sigd

common/misc/ lam,scale,ndata,smooth,nrat

do 40 i=1,ndata

write(iopheno,*) (x(i)*scale)

40 continue

do 3 i=1,ndata

y(i)=x(i)*scale

3 continue

do i=1,nrat

top(i)=0.d0

bot(i)=0.d0

enddo

do 4 i=1,nrat

tid=rl((2*i)-1)

bid=rl(2*i)

do 5 j=1,ndata

top(i)=top(i) + k(j,tid)*y(j)

bot(i)=bot(i) + k(j,bid)*y(j)

5 continue

rc(i)=top(i)/bot(i)

4 continue

do 7 i=1,nrat

write(rcdata,*) rc(i)

7 continue

return

end

c=============================================================

c

c These are added at the compilation stage

c

c include "rat_chi.f" ! contains fitness function

c include "pikaia.f" ! contains latest version of pikaia

c

c=============================================================

c*************************************************************

c*************************************************************

real function rat_chi(n,x)

c --------------------------

c=============================================================

c Fitness function for Ratio Inversion

c Scott McIntosh (scott@astro.gla.ac.uk) 11/5/98

c

c Use: Computes \chi^{2} estimator for RIT

c

c Input: n -- No. of parameters (discretisation points)

c x -- genotype array of n elements

c

c=============================================================

implicit none

integer n,i,j,ndata,tid,bid

integer ndata_max,nrat_max,d_max

parameter (ndata_max=100, nrat_max=100, d_max=50)

integer rl(nrat_max),smooth,nrat

real x(n),a1,b1,a2,b2,rat_chi

double precision h,lam,totd,ytot,yav,sum,scale

double precision top(ndata_max),bot(ndata_max),sumn(ndata_max)

double precision deriv(ndata_max),y(ndata_max),sigd(nrat_max)

double precision k(d_max,nrat_max),r(nrat_max),sigth(nrat_max)

common/data/ r,k,rl,sigth,sigd

common/misc/ lam,scale,ndata,smooth,nrat
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c----------1. Initialise and rescale variables:

ytot=0.d0

do 2 i=1,ndata

y(i)=x(i)*scale

deriv(i)=0.

ytot=ytot+y(i)

2 continue

do i=1,nrat

top(i)=0.

bot(i)=0.

sumn(i)=0.

enddo

yav=ytot/ndata

c----------2. Compute smoothness of solution

sum=0.

h=6.35

totd=0.

c----------2a Parabola fitting

a1=(y(1)-y(3))-2*(y(1)-y(2))/(2*(h*h))

b1=((y(1)-y(2))/h) - a1*2*h

a2=(y(ndata)-y(ndata-2))-2*(y(ndata)-y(ndata-1))/(2*(h*h))

b2=((y(ndata)-y(ndata-1))/h) - a2*2*h

if (smooth.eq.0) then

do i=1,ndata

deriv(i) = y(i)

end do

endif

if (smooth.eq.1) then

do i=1,(ndata-3)

deriv(i) = ((-y(i+3) +4*y(i+1) -3*y(i))/(2*h))

end do

do i=(ndata-2),(ndata-1)

deriv(i) = ((y(i+1)-y(i))/(h))

end do

deriv(ndata) = a2*(h)+b2

endif

if (smooth.eq.2) then

do i=1,(ndata-4)

deriv(i) = ((-y(i+3)+4*y(i+2)-5*y(i+1)+2*y(i))/(h*h))

end do

do i=(ndata-3),(ndata-2)

deriv(i) = ((y(i+2)-2*y(i+1)+y(i))/(h*h))

end do

deriv(ndata-1)=((y(ndata)-2*y(ndata-1)+y(ndata-2))/(h*h))

deriv(ndata)=2*a2

endif

c----------2b. Integrate to obtain modulus

do i=1,ndata

totd=totd+(deriv(i))**2

enddo

totd=sqrt(totd)

c----------2c. MaxEnt smoothing functional

if (smooth.eq.3) then

do i=1,ndata

totd = totd + (y(i)/yav)*log(y(i)/yav)

end do

endif

c----------3. Compute X(R_{obs},R_{calc})=(R_{calc} - R_{obs})^2
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do 4 i=1,nrat

tid=rl((2*i)-1)

bid=rl(2*i)

do 1 j=1,ndata

top(i) = top(i) + (k(j,tid)*y(j))

bot(i) = bot(i) + (k(j,bid)*y(j))

1 continue

4 continue

do 7 i=1,nrat

sumn(i) = (r(i)-(top(i)/bot(i)))**2

7 continue

do 5 i=1,nrat

sum = sum + (sumn(i)/(sigth(i)**2 + sigd(i)**2))

5 continue

c For MaxEnt calculation

if (smooth.eq.3) then

sum = sum + (lam*totd)

rat_chi = 1./sum

c For derivative calculation

else

sum = sum + (lam*totd)

rat_chi=1./(1.+sum)

endif

return

end

c*************************************************************
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Appendix B

Some SELECTOR details

In Chapter 5 we discussed the application of the SELECTOR genetic algorithm to the optimi-

sation of the condition number of the Di�erential Emission Measure (DEM) inverse problems

(and hence improve the numerical stability of the inferred solution to data noise). We per-

formed this by allowing SELECTOR to search for an optimal set of emission lines in the

SOHO CDS/SUMER wavelength range (150-1610 �A). In the following sections we discuss

the condition number estimator (primarily to increase the speed of the algorithm) of Cline

et al. (1979) and provide the Fortran-77 code of the algorithm.

B.1 Condition number estimation

In Section 5.1, while introducing the mechanics of the SELECTOR GA, we drew the reader's

attention to the fact that we are able to calculate the condition number CK of anm�nmatrix

K using either a full Singular Value Decomposition (SVD; see Section 2.1.3.2) or by using an

estimate for CK discussed by Cline et al. (1979). The former is known to be computationally

expensive O(n3) (n being the major dimension of matrix K) whereas the latter is only

O(n2). The bene�ts of implementing the condition number estimate in SELECTOR are clear

when considering the number of calculations required in a single evolutionary run of 5,000

generations, say. With 100 individuals in the population and n(= m) = 30 we have, for one

run,

5000 � 100 � 302 = 4:5� 108

calculations, excluding genetic operations.

Recalling the discussion of Section 2.1.2, we see that for the linear system ĝ = K f̂ where

the data (ĝ = g + Æg) and solution (f̂ = f + Æf), with their respective errors (Æg and Æf),
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experience error ampli�cation of the order, when matrix K is poorly conditioned

kÆfkp
kfkp

� kKkp kK
�1kp

kÆgkp
kgkp

(B.1)

where k � kp is a norm (with p = 1; 2;1; see Section 2.1.2). We also note that the condition

number CK of the system is de�ned as (cf. equation (2.19))

CK = kKkp kK
�1kp =

�max

�min
(B.2)

with the second equality holding when p = 2 for �max and �min, the maximum and minimum

singular values of K respectively. However, the numerically fast estimation of CK without

SVD is not straightforward and hinges upon the calculation of kK�1k without computing

the inverse matrix K�1.

So, following the discussion of Cline et al. (1979) we consider the LU decompositon (see,

e.g., Press et al. 1992) of a matrix A

PAQ = LU (B.3)

where L, U , P and Q are unit lower-triangular, upper-triangular and pivoting (from Gaus-

sian Elimination with Q normally equal to the identity matrix, see Sneddon 1972) matrices

respectively and we must estimate kA�1k by solving the hypothetical linear system Ax = b

where we have complete freedom to choose the right-hand side b subject to x being \big

enough" that

max
kxk

kbk
� �min = kU�1k2 (B.4)

holds.

For simplicity, in the code, we write PAQ = A and we seek the ratio kyk1=kxk1 where

the vector y is de�ned by :

LUy = x ; (LU)Tx = b : (B.5)

The �rst step is to �nd the solution of (LU)Tx = b which is performed in two stages by

�nding the solution to

UT z = b and LTx = z (B.6)

for which we wish to maximise the solution to UT z = b subject to the constraint that z is

\large" relative to b. This is done by choosing the kth element of b to belong to the set

f�1;+1g. Algorithmically, for step k, we have (for any triangular matrix T - UT in this

case) :
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z(k)+ = (1� p(k))=T (k; k)

s(k)+ = jz(k)+j+ kp(1 : k � 1) + T (1 : k � 1; k)z(k)+k2

z(k)� = (�1� p(k))=T (k; k)

s(k)� = jz(k)�j+ kp(1 : k � 1) + T (1 : k � 1; k)z(k)�k2

where z(k)+, z(k)� are upper and lower estimates of element z(k), s(k)+ and s(k)� are

their respective running sums and the value p(k) determines the sign of b(k) (p(k) � 0 sets

b(k) = �1 and if p(k) < 0 sets b(k) = �1). Furthermore z(k) is set to z(k)+ if s(k)+ � s(k)�

and to z(k)� otherwise. Repeating for all k we obtain a `large' estimate for z. The full

subroutine is called strco.f and can be found in Golub & Van Loan (1989) and in the

following section.

The condition number estimate is then readily achieved by solving the triangular systems

LTx = z (giving x), Lw = Px (giving w; a new intermediate vector) and Uy = w �nally

yeilding y, by back-substitution (Sneddon 1972). The estimate of CK is then readily obtained

by calculating the 1-norm (p =1) of x and y and taking their ratio.

B.2 The SELECTOR code

Program selector

c ----------------

c===================================================================

c

c Genetic Algorithm to seek the optimal subset of emission

c lines from the set formed by the set of lines in the SOHO

c CDS/SUMER wavelength range (150 -- 1610 Angstroms).

c

c The optimal set is selected via the condition number of

c the kernel matrix that constitutes the phenotype. To ensure

c that the `genes' (parameters; line indices) are not repeated in

c the gentype at any stage of the process we implement Ranked

c Ordinal Representation (ROR; see Michalewicz 1994).

c

c The condition number can be estimated in two ways through the

c `calc' variable in the input file. If calc eq. 1 then SELECTOR

c will perform the calculation using a full n^{3} SVD

c (Press et al. 1992) analysis else it will use the n^{2} condition

c number estimate (involving an LU decomposition) from

c Cline et al. (1979) and discussed in Golub & Van Loan (1990). The

c latter is a good order of magnitude estimate and is significantly

c faster.

c

c Scott W McIntosh (V2.1 6 Dec 1997; scott@astro.gla.ac.uk)

c

c===================================================================

Implicit none

c Constants

integer NMAX,PMAX,DMAX

parameter (NMAX = 50,PMAX = 100,DMAX=100)

c Variables

integer seed,maxlines,npar,n,nchoice,ngen,irep,new

integer ip,ip1,ip2,kdim,i,newtot,ielite,calc,ig
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real fdif,pmut,pcross

c Arrays

integer ifit(PMAX),jfit(PMAX)

integer ph(NMAX,2),oldph(NMAX,PMAX),newph(NMAX,PMAX)

integer gn1(NMAX),gn2(NMAX)

real fitns(PMAX),work(NMAX,DMAX),space(NMAX)

c Functions

real urand

external urand

c Read in the full line data into common block

Call setup(n,npar,maxlines,ngen,nchoice,pcross,

+ pmut,fdif,kdim,ielite,seed,irep,out)

Call rninit(seed)

c Create the initial population

Call initpop(NMAX,n,npar,init,maxlines,oldph)

Call eval_fit(NMAX,n,npar,fitns,oldph,kdim,work,

+ space)

wst=1.e0

c Rank initial population

Call rnkpop(npar,fitns,ifit,jfit)

c Main program loop (Generation)

do 10 ig=1,ngen

newtot=0

c Main Population Loop

do 20 ip=1,npar/2

c Breed population (2 parents at a time)

c 1. select two parents

Call select(npar,jfit,fdif,ip1)

21 Call select(npar,jfit,fdif,ip2)

if (ip1.eq.ip2) goto 21

c transform ph to gh

do 101 i=1,n

gn1(i)=oldph(i,ip1)

gn2(i)=oldph(i,ip2)

101 continue

c 2. breed (watching for uniqueness)

Call cross(n,pcross,gn1,gn2)

Call mutate(n,maxlines,pmut,gn1)

Call mutate(n,maxlines,pmut,gn2)

c transform gh to ph

do 102 i=1,n

ph(i,1)=gn1(i)

ph(i,2)=gn2(i)

102 continue

c 3. insert into population

if (irep.eq.1) then

Call genrep(NMAX,n,npar,ip,ph,newph)

else

Call stdrep(NMAX,n,npar,irep,ielite,

+ ph,oldph,fitns,ifit,jfit,new)

newtot = newtot+new

endif

20 continue

c Evaluate new generation + Rank + Order Population

Call newpop(NMAX,n,npar,oldph,newph,

+ ifit,jfit,fitns,newtot,kdim,maxlines,ielite)

c Report on progress after every X generations

c and handle end event !!
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Call report(NMAX,n,npar,fitns,oldph,ig,ngen,

+ kdim,ifit,out,wst,worst)

c End of Main loop (Generation)

10 continue

close(4)

end

c*********************************************************************

subroutine setup(n,npar,maxlines,ngen,nchoice,pcross,

+ pmut,fdif,kdim,ielite,calc,seed,irep)

c -----------------------------------------------------

c===================================================================

c Performs reading of initialization data

c For use with Selector

c===================================================================

c Common block details for fitness evaluation

common/data/ kern(100,200)

real kern

c Variables

integer nchoice,maxlines,n,npar,maxlines

integer kdim,ngen,i,ielite,calc,j,seed

real pmut,pcross,fdif

c Read in data, line list and probably config data

open(3,file='select.init')

rewind(3)

read(3,*) n,npar,maxlines,ngen,nchoice,kdim,pcross,

+ pmut,fdif,ielite,calc,seed,irep

close(3)

c print header and info

write(*,2) ngen,npar,n,maxlines,nchoice,kdim,pcross,

+ pmut,fdif,calc,ielite,seed

2 format(/1x,60('*'),/,

+ ' *',13x,'SELECTOR Genetic Algorithm Report',12x,'*',/,

+ 1x,60('*'),//,

+ ' Number of Generations evolving: ',i4,/,

+ ' Individuals per generation: ',i4,/,

+ ' Number of Chromosome segments: ',i4,/,

+ ' Number of Lines to chose from: ',i4,/,

+ ' Number of choices: ',i4,/,

+ ' Dimension on Matrix: ',i4,/,

+ ' Crossover probability: ',f9.4,/,

+ ' Initial mutation rate: ',f9.4,/,

+ ' Relative fitness differential: ',f9.4,/,

+ ' Full SVD(1) or Estimate(0): ',i4,/,

+ ' Elitism - yes(1) no(0): ',i4,/,

+ ' Seed: ',i8)

if (irep.eq.1) write(*,4) 'Full generational replacement'

if (irep.eq.2) write(*,4) 'Steady-state-replace-random'

if (irep.eq.3) write(*,4) 'Steady-state-replace-worst'

4 format(

+ ' Reproduction Plan: ',A)

open(2,file='file.dat')

rewind(2)

read(2,*) ((kern(i,j),j=1,kdim),i=1,maxlines)

close(2)

write(*,1005)

write(*,1006)

1005 format(/1x,60('*'),/)

1006 format(1x,'Gen.',3x,'Best',10x,'Median')

return

end

c**********************************************************************

subroutine report(ndim,n,np,fit,pop,ngen,mg,kdim,ifit)

c ------------------------------------------------------
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c===================================================================

c Performs output on the end of each generation

c For use with Selector

c===================================================================

c Common block details for fitness evaluation

common/data/ kern(100,200)

real kern

c Variables

integer i,j,n,np,ndim,mg,kdim,ngen

c Arrays

integer pop(ndim,np),ifit(np)

real fit(np),best(100,100)

open(4,file='converge.log')

c Write best and median child to screen

c Write best child to log (fitness + ids)

if (mod(ngen,10).eq.0) then

write(*,*) ngen,fit(ifit(np)),fit(ifit(np/2))

do 1 i=1,n

write(*,1003) pop(i,ifit(np)),pop(i,ifit(np/2))

1 continue

endif

write(4,*) fit(ifit(np))

1001 format(/1x,i4,g9.7,5x,g9.7)

1002 format(g10.7)

1003 format(6x,i4,10x,i4)

c Write best Matrix to file on completion of mg generations

if (ngen.eq.mg) then

open(5,file='best.dat')

open(6,file='sel_out.dat')

rewind(5)

rewind(6)

do 5 i=1,n

write(6,*) pop(i,ifit(np))

do 6 j=1,kdim

best(i,j)=kern(pop(i,ifit(np)),j)

6 continue

5 continue

do 7 i=1,n

write(5,*) (best(i,j),j=1,kdim)

7 continue

close(5)

close(6)

end if

end

c**********************************************************************

subroutine initpop(ndim,n,npar,pop,maxlines)

c --------------------------------------------

c===================================================================

c Calculates initial population of integers

c For use with Selector

c===================================================================

integer n,npar,maxlines,pop(ndim,npar)

integer ip,j,ndim,oldph(ndim,npar)

integer ip,j,ndim,temp(100),p_temp(100)

real urand

external urand

do 1 ip=1,npar

do 2 j=1,n

pop(j,ip) = int(maxlines*urand())+1

temp(j) = pop(j,ip)

2 continue

Call decoder(maxlines,n,temp,p_temp)

do 3 j=1,n

oldph(j,ip) = p_temp(j)
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3 continue

1 continue

end

c**********************************************************************

subroutine select(np,jfit,fdif,idad)

c ------------------------------------

c===================================================================

c Selects parents from population, using a roulette wheel

c algorithm with relative fitness of phenotypes as 'hit'

c probabilities [Davis 91 Ch.1]. For use with Selector

c===================================================================

implicit none

integer np, jfit(np), idad, np1, i

real fdif, dice, rtfit, urand

external urand

np1 = np+1

dice = urand()*np*np1

rtfit = 0.

do 1 i=1,np

rtfit = rtfit+np1+fdif*(np1-2*jfit(i))

if (rtfit.ge.dice) then

idad=i

goto 2

endif

1 continue

c Assert: loop will never exit by falling through

2 return

end

c*********************************************************************

subroutine cross(n,pcross,gn1,gn2)

c ----------------------------------

c===================================================================

c Breeds two parent chromosomes into two offspring

c chromosomes: machanism is simple cross-over at

c the position ispl. For use with Selector

c===================================================================

implicit none

c

integer n, i, ispl, t, gn1(n), gn2(n)

real pcross, urand

external urand

c Use crossover probability to decide whether a crossover occurs

if (urand().lt.pcross) then

c Compute crossover point

ispl=int(urand()*(n-1))+1

c Swap genes at ispl and above

do 10 i=ispl,n

t=gn2(i)

gn2(i)=gn1(i)

gn1(i)=t

10 continue

endif

return

end

c**********************************************************************

subroutine newpop(ndim,n,np,oldph,newph,ifit,jfit,

+ fitns,nnew,kdim,maxlines,ielite,calc)

c -------------------------------------------------------

c===================================================================

c Replaces old population by new, also recomputes fitnesses

c and ranks of the new population

c For use with Selector (c) Scott McIntosh
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c===================================================================

implicit none

integer NMAX,PMAX,ndim, np, n, maxlines, ielite, calc

integer oldph(ndim,np), newph(ndim,np), i, k

integer ifit(np), jfit(np), nnew, kdim

parameter (NMAX = 50,PMAX = 100)

real fitns(np),work(NMAX,PMAX),space(PMAX),st(PMAX)

real ff

external ff

c if using elitism, introduce in new population fittest of old

c population (if greater than fitness of the individual it is

c to replace)

if (ielite.eq.1 .and. ff(n,newph(1,1),calc).lt.fitns(ifit(np))) then

do 1 k=1,n

newph(k,1)=oldph(k,ifit(np))

1 continue

nnew = nnew-1

endif

c replace population

do 2 i=1,np

do 3 k=1,n

oldph(k,i)=newph(k,i)

3 continue

fitns(i)=ff(n,oldph(1,i),calc)

2 continue

c compute new population fitness rank order

Call rnkpop(np,fitns,ifit,jfit)

return

end

c**********************************************************************

subroutine eval_fit(ndim,n,npar,fitns,family,kdim,

+ work,space,calc)

c --------------------------------------------------

c===================================================================

c Calculates Fitness of population array in this

c case, it is the condition number

c===================================================================

implicit none

c Common block details for fitness evaluation

common/data/ kern(100,200)

real kern

c Variables

integer n,npar,i,j,kdim,m,ndim,calc

real cond,info,info2,wmin,wmax

c Arrays

integer index(100),family(ndim,npar)

real work(n,kdim),space(n),fitns(npar)

real v(100,100)

c Uses

c strco and ludcmp routines

c Compute working space matrix

do 4 i=1,npar

do 5 m=1,n

do 6 j=1,kdim

work(m,j)=kern(family(m,i),j)

6 continue

5 continue

c Is it full SVD or estimator ?

if (calc.eq.1) then

Call svdcmp(work,n,kdim,n,kdim,space,v)

wmax=space(1)

wmin=space(1)

do 7 m=1,n

if(space(m).gt.wmax)then
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wmax=space(m)

endif

if((space(m).lt.wmax).and.(space(m).gt.0.d0))then

wmin=space(m)

endif

7 continue

cond=(wmin/wmax)

else

c Compute LU decomposition

info=0.d0

Call ludcmp(work,n,kdim,index,info)

c Compute estimate of condition number for workspace matrix

info2=0.d0

Call strco(work,n,kdim,cond,space,info2)

endif

fitns(i)=cond

4 continue

end

c**********************************************************************

subroutine rnkpop(n,arrin,indx,rank)

c ------------------------------------

c===================================================================

c Uses RQSort to sort population fitness levels in

c array rank (ascending order). For use with Selector

c===================================================================

implicit none

integer n,indx(n),rank(n),i

real arrin(n)

external rqsort

c Compute the key index

Call rqsort(n,arrin,indx)

c ...and the rank order

do 1 i=1,n

rank(indx(i)) = (n-i)+1

1 continue

return

end

c*********************************************************************

subroutine genrep(ndim,n,np,ip,ph,newph)

c ----------------------------------------

c===================================================================

c Full generation Replacement subroutine

c For use with Selector

c===================================================================

implicit none

integer ndim,n,np,ip,i1,i2,k

integer ph(ndim,2),newph(ndim,np)

i1 = 2*ip - 1

i2 = i1 + 1

do 1 k=1,n

newph(k,i1) = ph(k,1)

newph(k,i2) = ph(k,2)

1 continue

return

end

c**********************************************************************

subroutine decoder(m,n,s,lnlist)

c --------------------------------

c===================================================================

c Converts an ordinal vector (integer) into a line list (integer)

c using ROR;

c
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c INPUT:

c m: scalar integer, size of line sample

c n: scalar integer, size of line subset being evolved

c s: integer, size n, ordinal vector defining selection

c

c OUTPUT:

c lnlist: integer, size n, line selection

c===================================================================

implicit none

integer NMAX,MMAX

parameter(NMAX=40,MMAX=133)

c Input

integer n,m

integer s(n)

c Output

integer lnlist(n)

c Local

integer indx(NMAX),sample(MMAX)

external indexx

integer i,j,ii,jj

c 1. construct sample vector

do i=1,m

sample(i)=i

enddo

c 2. rank selection vector

Call indexx(n,s,indx)

c 3. build line list

do i=1,n

ii=indx(n-i+1)

jj=s(ii)

if(jj.gt.(m-i+1)) jj=jj-(m-i+1)

lnlist(i)=sample( jj )

do j=jj,m-1

sample(j)=sample(j+1)

enddo

enddo

return

end

c******************************************************************

SUBROUTINE indexx(n,arr,indx)

c -----------------------------

c===================================================================

c Ranks the n-element array (arr; See Press el al.1992)

c===================================================================

INTEGER n,indx(n),M,NSTACK

REAL arr(n)

PARAMETER (M=11,NSTACK=50)

INTEGER i,indxt,ir,itemp,j,jstack,k,l,istack(NSTACK)

REAL a

do 11 j=1,n

indx(j)=j

11 continue

jstack=0

l=1

ir=n

1 if(ir-l.lt.M)then

do 13 j=l+1,ir

indxt=indx(j)

a=arr(indxt)

do 12 i=j-1,l,-1

if(arr(indx(i)).le.a)goto 2

indx(i+1)=indx(i)

12 continue

i=l-1

2 indx(i+1)=indxt

13 continue

if(jstack.eq.0)return

ir=istack(jstack)
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l=istack(jstack-1)

jstack=jstack-2

else

k=(l+ir)/2

itemp=indx(k)

indx(k)=indx(l+1)

indx(l+1)=itemp

if(arr(indx(l+1)).gt.arr(indx(ir)))then

itemp=indx(l+1)

indx(l+1)=indx(ir)

indx(ir)=itemp

endif

if(arr(indx(l)).gt.arr(indx(ir)))then

itemp=indx(l)

indx(l)=indx(ir)

indx(ir)=itemp

endif

if(arr(indx(l+1)).gt.arr(indx(l)))then

itemp=indx(l+1)

indx(l+1)=indx(l)

indx(l)=itemp

endif

i=l+1

j=ir

indxt=indx(l)

a=arr(indxt)

3 continue

i=i+1

if(arr(indx(i)).lt.a)goto 3

4 continue

j=j-1

if(arr(indx(j)).gt.a)goto 4

if(j.lt.i)goto 5

itemp=indx(i)

indx(i)=indx(j)

indx(j)=itemp

goto 3

5 indx(l)=indx(j)

indx(j)=indxt

jstack=jstack+2

if(jstack.gt.NSTACK)pause 'NSTACK too small in indexx'

if(ir-i+1.ge.j-l)then

istack(jstack)=ir

istack(jstack-1)=i

ir=j-1

else

istack(jstack)=j-1

istack(jstack-1)=l

l=i

endif

endif

goto 1

END

c (C) Copr. 1986-92 Numerical Recipes Software

c**********************************************************************

subroutine stdrep

+ (ndim,n,np,irep,ielite,ph,oldph,fitns,ifit,jfit,nnew)

c --------------------------------------------------------

c===================================================================

c steady-state reproduction: insert offspring pair into population

c only if they are fit enough (replace-random if irep=2 or

c replace-worst if irep=3).

c===================================================================

implicit none

integer ndim, n, np, irep, ielite, ifit(np)

integer jfit(np), nnew, i, j, k, i1, if1

real ff, ph(ndim,2), oldph(ndim,np), fitns(np), fit

real urand

external ff, urand

nnew = 0

do 1 j=1,2
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c 1. compute offspring fitness (with caller's fitness function)

fit=ff(n,ph(1,j),calc)

c 2. if fit enough, insert in population

do 20 i=np,1,-1

if (fit.gt.fitns(ifit(i))) then

c make sure the phenotype is not already in the population

if (i.lt.np) then

do 5 k=1,n

if (oldph(k,ifit(i+1)).ne.ph(k,j)) goto 6

5 continue

goto 1

6 continue

endif

c offspring is fit enough for insertion, and is unique

c (i) insert phenotype at appropriate place in population

if (irep.eq.3) then

i1=1

else if (ielite.eq.0 .or. i.eq.np) then

i1=int(urand()*np)+1

else

i1=int(urand()*(np-1))+1

endif

if1 = ifit(i1)

fitns(if1)=fit

do 21 k=1,n

oldph(k,if1)=ph(k,j)

21 continue

c (ii) shift and update ranking arrays

if (i.lt.i1) then

c shift up

jfit(if1)=np-i

do 22 k=i1-1,i+1,-1

jfit(ifit(k))=jfit(ifit(k))-1

ifit(k+1)=ifit(k)

22 continue

ifit(i+1)=if1

else

c shift down

jfit(if1)=np-i+1

do 23 k=i1+1,i

jfit(ifit(k))=jfit(ifit(k))+1

ifit(k-1)=ifit(k)

23 continue

ifit(i)=if1

endif

nnew = nnew+1

goto 1

endif

20 continue

1 continue

return

end

c*********************************************************************

subroutine mutate(n,max,pmut,gn)

c --------------------------------

c===================================================================

c Performs single gene mutation if conditions allow.

c===================================================================

implicit none

integer n,gn(n),i,max

real pmut, urand

external urand
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do 10 i=1,n

if (urand().lt.pmut) then

gn(i)=int(urand()*max) + 1

end if

10 continue

return

end

c*********************************************************************

Function ff(n,x,job)

c ----------------

c===================================================================

c The fitness evaluation function

c===================================================================

common/data/ kern(100,200)

real kern, cond, ff, info, info2, work(30,30), space(30)

integer n, i, j, kdim, m, index(30), x(n), job, indx(n)

external rqsort

kdim=n

c Compute working space matrix

do 5 m=1,n

do 6 j=1,kdim

work(m,j)=kern(x(m),j)

6 continue

5 continue

c Is it full SVD or estimator ?

if (calc.eq.1) then

Call svdcmp(work,n,kdim,n,kdim,space,v)

Call indexx(n,n,indx)

cond=(space(indx(n))/space(indx(0)))

else

c Compute LU decomposition

info = 0.d0

Call ludcmp(work,n,kdim,index,info)

c Compute estimate of condition number for workspace matrix

info2 = 0.d0

Call strco(work,n,kdim,cond,space,info2)

endif

ff=cond

return

end

c**********************************************************************

subroutine ludcmp(a,n,np,indx,d)

c --------------------------------

c===================================================================

c Performs LU decomposition of Matrix A (See Press el al.1992)

c===================================================================

integer n, np, indx(n), nmax

integer i, imax, j, k

real d,a(np,np),tiny

real aamax,dum,sum,vv(nmax)

parameter (nmax=500,tiny=1.0e-20)

d=1.

do 12 i=1,n

aamax=0.

do 11 j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

11 continue

if (aamax.eq.0.) pause 'singular matrix in ludcmp'

vv(i)=1./aamax

12 continue

do 19 j=1,n

do 14 i=1,j-1

sum=a(i,j)

do 13 k=1,i-1
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sum=sum-a(i,k)*a(k,j)

13 continue

a(i,j)=sum

14 continue

aamax=0.

do 16 i=j,n

sum=a(i,j)

do 15 k=1,j-1

sum=sum-a(i,k)*a(k,j)

15 continue

a(i,j)=sum

dum=vv(i)*abs(sum)

if (dum.ge.aamax) then

imax=i

aamax=dum

endif

16 continue

if (j.ne.imax)then

do 17 k=1,n

dum=a(imax,k)

a(imax,k)=a(j,k)

a(j,k)=dum

17 continue

d=-d

vv(imax)=vv(j)

endif

indx(j)=imax

if(a(j,j).eq.0.)a(j,j)=tiny

if(j.ne.n)then

dum=1./a(j,j)

do 18 i=j+1,n

a(i,j)=a(i,j)*dum

18 continue

endif

19 continue

return

end

c (c) copr. 1986-92 numerical recipes software

c**********************************************************************

subroutine strco(t,ldt,n,rcond,z,job)

c -------------------------------------

c===================================================================

c keywords condition,factor,linear algebra,linpack,matrix,triangular

c author moler, c. b., (u. of new mexico)

c purpose estimates the condition of a real triangular matrix.

c

c strco estimates the condition of a real triangular matrix.

c

c on entry

c

c t real(ldt,n)

c t contains the triangular matrix. the zero

c elements of the matrix are not referenced, and

c the corresponding elements of the array can be

c used to store other information.

c

c ldt integer

c ldt is the leading dimension of the array t.

c

c n integer

c n is the order of the system.

c

c job integer

c = 0 t is lower triangular.

c = nonzero t is upper triangular.

c

c on return

c

c rcond real

c an estimate of the reciprocal condition of t .

c for the system t*x = b , relative perturbations

c in t and b of size epsilon may cause
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c relative perturbations in x of size epsilon/rcond .

c if rcond is so small that the logical expression

c 1.0 + rcond .eq. 1.0

c is true, then t may be singular to working

c precision. in particular, rcond is zero if

c exact singularity is detected or the estimate

c underflows.

c

c z real(n)

c a work vector whose contents are usually unimportant.

c if t is close to a singular matrix, then z is

c an approximate null vector in the sense that

c norm(a*z) = rcond*norm(a)*norm(z) .

c

c***references dongarra j.j., bunch j.r., moler c.b., stewart g.w.,

c *linpack users guide*, siam, 1979.

c===================================================================

integer ldt,n,job

real t(ldt,1),z(1)

real rcond

c

real w,wk,wkm,ek

real tnorm,ynorm,s,sm,sasum

integer i1,j,j1,j2,k,kk,l

logical lower

c***first executable statement strco

lower = job .eq. 0

c

c compute 1-norm of t

c

tnorm = 0.0e0

do 10 j = 1, n

l = j

if (lower) l = n + 1 - j

i1 = 1

if (lower) i1 = j

tnorm = amax1(tnorm,sasum(l,t(i1,j),1))

10 continue

ek = 1.0e0

do 20 j = 1, n

z(j) = 0.0e0

20 continue

do 100 kk = 1, n

k = kk

if (lower) k = n + 1 - kk

if (z(k) .ne. 0.0e0) ek = sign(ek,-z(k))

if (abs(ek-z(k)) .le. abs(t(k,k))) go to 30

s = abs(t(k,k))/abs(ek-z(k))

Call sscal(n,s,z,1)

ek = s*ek

30 continue

wk = ek - z(k)

wkm = -ek - z(k)

s = abs(wk)

sm = abs(wkm)

if (t(k,k) .eq. 0.0e0) go to 40

wk = wk/t(k,k)

wkm = wkm/t(k,k)

go to 50

40 continue

wk = 1.0e0

wkm = 1.0e0

50 continue

if (kk .eq. n) go to 90

j1 = k + 1

if (lower) j1 = 1

j2 = n

if (lower) j2 = k - 1

do 60 j = j1, j2

sm = sm + abs(z(j)+wkm*t(k,j))

z(j) = z(j) + wk*t(k,j)

s = s + abs(z(j))

60 continue
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if (s .ge. sm) go to 80

w = wkm - wk

wk = wkm

do 70 j = j1, j2

z(j) = z(j) + w*t(k,j)

70 continue

80 continue

90 continue

z(k) = wk

100 continue

s = 1.0e0/sasum(n,z,1)

Call sscal(n,s,z,1)

c

ynorm = 1.0e0

c

c solve t*z = y

c

do 130 kk = 1, n

k = n + 1 - kk

if (lower) k = kk

if (abs(z(k)) .le. abs(t(k,k))) go to 110

s = abs(t(k,k))/abs(z(k))

Call sscal(n,s,z,1)

ynorm = s*ynorm

110 continue

if (t(k,k) .ne. 0.0e0) z(k) = z(k)/t(k,k)

if (t(k,k) .eq. 0.0e0) z(k) = 1.0e0

i1 = 1

if (lower) i1 = k + 1

if (kk .ge. n) go to 120

w = -z(k)

Call saxpy(n-kk,w,t(i1,k),1,z(i1),1)

120 continue

130 continue

c make znorm = 1.0

s = 1.0e0/sasum(n,z,1)

Call sscal(n,s,z,1)

ynorm = s*ynorm

c

if (tnorm .ne. 0.0e0) rcond = ynorm/tnorm

if (tnorm .eq. 0.0e0) rcond = 0.0e0

return

end

c***************************************************************

real function sasum(n,sx,incx)

c ------------------------------

c===================================================================

c n number of elements in input vector(s)

c sx single precision vector with n elements

c incx storage spacing between elements of sx

c

c***references lawson c.l., hanson r.j., kincaid d.r., krogh f.t.,

c *basic linear algebra subprograms for fortran usage*,

c algorithm no. 539, transactions on mathematical

c software, volume 5, number 3, september 1979, 308-323

c===================================================================

real sx(1)

c***first executable statement sasum

sasum = 0.0e0

if(n.le.0)return

if(incx.eq.1)goto 20

c

c code for increments not equal to 1.

c

ns = n*incx

do 10 i=1,ns,incx

sasum = sasum + abs(sx(i))

10 continue

return

c

c code for increments equal to 1.

c clean-up loop so remaining vector length is a multiple of 6.

200



B.2. THE SELECTOR CODE

c

20 m = mod(n,6)

if( m .eq. 0 ) go to 40

do 30 i = 1,m

sasum = sasum + abs(sx(i))

30 continue

if( n .lt. 6 ) return

40 mp1 = m + 1

do 50 i = mp1,n,6

sasum = sasum + abs(sx(i)) + abs(sx(i + 1)) + abs(sx(i + 2))

1 + abs(sx(i + 3)) + abs(sx(i + 4)) + abs(sx(i + 5))

50 continue

return

end

c***************************************************************

subroutine saxpy(n,sa,sx,incx,sy,incy)

c --------------------------------------

c===================================================================

c n number of elements in input vector(s)

c sa single precision scalar multiplier

c sx single precision vector with n elements

c incx storage spacing between elements of sx

c sy single precision vector with n elements

c incy storage spacing between elements of sy

c

c references lawson c.l., hanson r.j., kincaid d.r., krogh f.t.,

c *basic linear algebra subprograms for fortran usage*,

c algorithm no. 539, transactions on mathematical

c software, volume 5, number 3, september 1979, 308-323

c

c===================================================================

real sx(1),sy(1),sa

c***first executable statement saxpy

if(n.le.0.or.sa.eq.0.e0) return

if(incx.eq.incy) if(incx-1) 5,20,60

5 continue

c

c code for nonequal or nonpositive increments.

c

ix = 1

iy = 1

if(incx.lt.0)ix = (-n+1)*incx + 1

if(incy.lt.0)iy = (-n+1)*incy + 1

do 10 i = 1,n

sy(iy) = sy(iy) + sa*sx(ix)

ix = ix + incx

iy = iy + incy

10 continue

return

c

c code for both increments equal to 1

c clean-up loop so remaining vector length is a multiple of 4.

c

20 m = mod(n,4)

if( m .eq. 0 ) go to 40

do 30 i = 1,m

sy(i) = sy(i) + sa*sx(i)

30 continue

if( n .lt. 4 ) return

40 mp1 = m + 1

do 50 i = mp1,n,4

sy(i) = sy(i) + sa*sx(i)

sy(i + 1) = sy(i + 1) + sa*sx(i + 1)

sy(i + 2) = sy(i + 2) + sa*sx(i + 2)

sy(i + 3) = sy(i + 3) + sa*sx(i + 3)

50 continue

return

c

c code for equal, positive, nonunit increments.

c

60 continue

ns = n*incx
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do 70 i=1,ns,incx

sy(i) = sa*sx(i) + sy(i)

70 continue

return

end

c***************************************************************

subroutine sscal(n,sa,sx,incx)

c ------------------------------

c===================================================================

c n number of elements in input vector(s)

c sa single precision scale factor

c sx single precision vector with n elements

c incx storage spacing between elements of sx

c sx single precision result (unchanged if n .le. 0)

c

c replace single precision sx by single precision sa*sx.

c for i = 0 to n-1, replace sx(1+i*incx) with sa * sx(1+i*incx)

c references lawson c.l., hanson r.j., kincaid d.r., krogh f.t.,

c *basic linear algebra subprograms for fortran usage*,

c algorithm no. 539, transactions on mathematical

c software, volume 5, number 3, september 1979, 308-323

c===================================================================

real sa,sx(1)

c***first executable statement sscal

if(n.le.0)return

if(incx.eq.1)goto 20

c

c code for increments not equal to 1.

c

ns = n*incx

do 10 i = 1,ns,incx

sx(i) = sa*sx(i)

10 continue

return

c

c code for increments equal to 1.

c clean-up loop so remaining vector length is a multiple of 5.

c

20 m = mod(n,5)

if( m .eq. 0 ) go to 40

do 30 i = 1,m

sx(i) = sa*sx(i)

30 continue

if( n .lt. 5 ) return

40 mp1 = m + 1

do 50 i = mp1,n,5

sx(i) = sa*sx(i)

sx(i + 1) = sa*sx(i + 1)

sx(i + 2) = sa*sx(i + 2)

sx(i + 3) = sa*sx(i + 3)

sx(i + 4) = sa*sx(i + 4)

50 continue

return

end

c**********************************************************************

subroutine svdcmp(a,m,n,mp,np,w,v)

c===================================================================

c Performs Singular Value Decomposition (see Press et al. 1992)

c===================================================================

integer m,mp,n,np,nmax

real a(mp,np),v(np,np),w(np)

parameter (nmax=500)

cu uses pythag

integer i,its,j,jj,k,l,nm

real anorm,c,f,g,h,s,scale,x,y,z,rv1(nmax),pythag

g=0.0

scale=0.0

anorm=0.0

do 25 i=1,n
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l=i+1

rv1(i)=scale*g

g=0.0

s=0.0

scale=0.0

if(i.le.m)then

do 11 k=i,m

scale=scale+abs(a(k,i))

11 continue

if(scale.ne.0.0)then

do 12 k=i,m

a(k,i)=a(k,i)/scale

s=s+a(k,i)*a(k,i)

12 continue

f=a(i,i)

g=-sign(sqrt(s),f)

h=f*g-s

a(i,i)=f-g

do 15 j=l,n

s=0.0

do 13 k=i,m

s=s+a(k,i)*a(k,j)

13 continue

f=s/h

do 14 k=i,m

a(k,j)=a(k,j)+f*a(k,i)

14 continue

15 continue

do 16 k=i,m

a(k,i)=scale*a(k,i)

16 continue

endif

endif

w(i)=scale *g

g=0.0

s=0.0

scale=0.0

if((i.le.m).and.(i.ne.n))then

do 17 k=l,n

scale=scale+abs(a(i,k))

17 continue

if(scale.ne.0.0)then

do 18 k=l,n

a(i,k)=a(i,k)/scale

s=s+a(i,k)*a(i,k)

18 continue

f=a(i,l)

g=-sign(sqrt(s),f)

h=f*g-s

a(i,l)=f-g

do 19 k=l,n

rv1(k)=a(i,k)/h

19 continue

do 23 j=l,m

s=0.0

do 21 k=l,n

s=s+a(j,k)*a(i,k)

21 continue

do 22 k=l,n

a(j,k)=a(j,k)+s*rv1(k)

22 continue

23 continue

do 24 k=l,n

a(i,k)=scale*a(i,k)

24 continue

endif

endif

anorm=max(anorm,(abs(w(i))+abs(rv1(i))))

25 continue

do 32 i=n,1,-1

if(i.lt.n)then

if(g.ne.0.0)then

do 26 j=l,n

v(j,i)=(a(i,j)/a(i,l))/g
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26 continue

do 29 j=l,n

s=0.0

do 27 k=l,n

s=s+a(i,k)*v(k,j)

27 continue

do 28 k=l,n

v(k,j)=v(k,j)+s*v(k,i)

28 continue

29 continue

endif

do 31 j=l,n

v(i,j)=0.0

v(j,i)=0.0

31 continue

endif

v(i,i)=1.0

g=rv1(i)

l=i

32 continue

do 39 i=min(m,n),1,-1

l=i+1

g=w(i)

do 33 j=l,n

a(i,j)=0.0

33 continue

if(g.ne.0.0)then

g=1.0/g

do 36 j=l,n

s=0.0

do 34 k=l,m

s=s+a(k,i)*a(k,j)

34 continue

f=(s/a(i,i))*g

do 35 k=i,m

a(k,j)=a(k,j)+f*a(k,i)

35 continue

36 continue

do 37 j=i,m

a(j,i)=a(j,i)*g

37 continue

else

do 38 j= i,m

a(j,i)=0.0

38 continue

endif

a(i,i)=a(i,i)+1.0

39 continue

do 49 k=n,1,-1

do 48 its=1,30

do 41 l=k,1,-1

nm=l-1

if((abs(rv1(l))+anorm).eq.anorm) goto 2

if((abs(w(nm))+anorm).eq.anorm) goto 1

41 continue

1 c=0.0

s=1.0

do 43 i=l,k

f=s*rv1(i)

rv1(i)=c*rv1(i)

if((abs(f)+anorm).eq.anorm) goto 2

g=w(i)

h=pythag(f,g)

w(i)=h

h=1.0/h

c= (g*h)

s=-(f*h)

do 42 j=1,m

y=a(j,nm)

z=a(j,i)

a(j,nm)=(y*c)+(z*s)

a(j,i)=-(y*s)+(z*c)

42 continue

43 continue

204



B.2. THE SELECTOR CODE

2 z=w(k)

if(l.eq.k)then

if(z.lt.0.0)then

w(k)=-z

do 44 j=1,n

v(j,k)=-v(j,k)

44 continue

endif

goto 3

endif

if(its.eq.30) pause 'no convergence in svdcmp'

x=w(l)

nm=k-1

y=w(nm)

g=rv1(nm)

h=rv1(k)

f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)

g=pythag(f,1.0)

f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x

c=1.0

s=1.0

do 47 j=l,nm

i=j+1

g=rv1(i)

y=w(i)

h=s*g

g=c*g

z=pythag(f,h)

rv1(j)=z

c=f/z

s=h/z

f= (x*c)+(g*s)

g=-(x*s)+(g*c)

h=y*s

y=y*c

do 45 jj=1,n

x=v(jj,j)

z=v(jj,i)

v(jj,j)= (x*c)+(z*s)

v(jj,i)=-(x*s)+(z*c)

45 continue

z=pythag(f,h)

w(j)=z

if(z.ne.0.0)then

z=1.0/z

c=f*z

s=h*z

endif

f= (c*g)+(s*y)

x=-(s*g)+(c*y)

do 46 jj=1,m

y=a(jj,j)

z=a(jj,i)

a(jj,j)= (y*c)+(z*s)

a(jj,i)=-(y*s)+(z*c)

46 continue

47 continue

rv1(l)=0.0

rv1(k)=f

w(k)=x

48 continue

3 continue

49 continue

return

end

c (c) copr. 1986-92 numerical recipes software

c**********************************************************************

function pythag(a,b)

c --------------------

c===================================================================

c For use with SVDCMP (See Press et al. 1992)

c===================================================================
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real a,b,pythag

real absa,absb

absa=abs(a)

absb=abs(b)

if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)

else

if(absa.eq.0)then

pythag=0.

else

pythag=absb*sqrt(1.+(absa/absb)**2)

endif

endif

return

end

c (c) copr. 1986-92 numerical recipes software

c**********************************************************************

function urand()

c===================================================================

c return the next pseudo-random deviate from a sequence which is

c uniformly distributed in the interval [0,1]

c

c uses the function ran0, the "minimal standard" random number

c generator of park and miller (comm. acm 31, 1192-1201, oct 1988;

c comm. acm 36 no. 7, 105-110, july 1993).

c===================================================================

implicit none

real urand, ran0

integer iseed

external ran0

common /rnseed/ iseed

c

urand = ran0( iseed )

return

end

c*********************************************************************

subroutine rninit( seed )

c===================================================================

c initialize random number generator urand with given seed

c===================================================================

implicit none

integer seed, iseed

c common block to communicate with urand

common /rnseed/ iseed

c

c set the seed value

iseed = seed

if(iseed.le.0) iseed=123456

return

end

c*********************************************************************

function ran0( seed )

c=====================================================================

c "minimal standard" pseudo-random number generator of park and

c miller. returns a uniform random deviate r s.t. 0 < r < 1.0.

c set seed to any non-zero integer value to initialize a sequence,

c then do not change seed between calls for successive deviates

c in the sequence.

c

c references:

c park, s. and miller, k., "random number generators: good ones

c are hard to find", comm. acm 31, 1192-1201 (oct. 1988)

c park, s. and miller, k., in "remarks on choosing and imple-

c menting random number generators", comm. acm 36 no. 7,

c 105-110 (july 1993)

c====================================================================

implicit none

integer seed, a, m, q, r, j

real ran0, scale, eps, rnm
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parameter (a=48271,m=2147483647,q=44488,r=3399)

parameter (scale=1./m,eps=1.2e-7,rnmx=1.-eps)

j = seed/q

seed = a*(seed-j*q)-r*j

if (seed .lt. 0) seed = seed+m

ran0 = min(seed*scale,rnmx)

return

end

c***********************************************************************

subroutine rqsort(n,a,p)

c======================================================================

c return integer array p which indexes array a in increasing order.

c array a is not disturbed. the quicksort algorithm is used.

c

c b. g. knapp, 86/12/23

c

c reference: n. wirth, algorithms and data structures,

c prentice-hall, 1986

c======================================================================

implicit none

integer n, p(n), lgn, q

integer stackl(lgn),stackr(lgn),s,t,l,m,r,i,j

real a(n), x

parameter (lgn=32, q=11)

c (lgn = log base 2 of maximum n;

c q = smallest subfile to use quicksort on)

c initialize the stack

stackl(1)=1

stackr(1)=n

s=1

c initialize the pointer array

do 1 i=1,n

p(i)=i

1 continue

2 if (s.gt.0) then

l=stackl(s)

r=stackr(s)

s=s-1

3 if ((r-l).lt.q) then

c use straight insertion

do 6 i=l+1,r

t = p(i)

x = a(t)

do 4 j=i-1,l,-1

if (a(p(j)).le.x) goto 5

p(j+1) = p(j)

4 continue

j=l-1

5 p(j+1) = t

6 continue

else

c use quicksort, with pivot as median of a(l), a(m), a(r)

m=(l+r)/2

t=p(m)

if (a(t).lt.a(p(l))) then

p(m)=p(l)

p(l)=t

t=p(m)

endif

if (a(t).gt.a(p(r))) then

p(m)=p(r)

p(r)=t

t=p(m)

if (a(t).lt.a(p(l))) then

p(m)=p(l)

p(l)=t

t=p(m)

endif
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endif

c partition

x=a(t)

i=l+1

j=r-1

7 if (i.le.j) then

8 if (a(p(i)).lt.x) then

i=i+1

goto 8

endif

9 if (x.lt.a(p(j))) then

j=j-1

goto 9

endif

if (i.le.j) then

t=p(i)

p(i)=p(j)

p(j)=t

i=i+1

j=j-1

endif

goto 7

endif

c stack the larger subfile

s=s+1

if ((j-l).gt.(r-i)) then

stackl(s)=l

stackr(s)=j

l=i

else

stackl(s)=i

stackr(s)=r

r=j

endif

goto 3

endif

goto 2

endif

return

end

c***********************************************************************

c***********************************************************************
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